Биотопливо

Автономные теплоэлектростанции на пиролизном топливе

Растительная биомасса в виде отходов деревообработки и растениеводства может служить альтернативой ископаемому энергетическому сырью (уголь, нефть, газ) при производстве тепла и электроэнергии. Современные технологии конверсии растительной биомассы позволяют получать твердое, жидкое и газообразное углеводное топливо, которое в отличие от углеводородного имеет высокие показатели экологической безопасности и обеспечивает устойчивое развитие регионов, удаленных от месторождений ископаемого топливного сырья.

Пиролиз — термохимическая переработка органического вещества в бескислородной среде, который является наиболее универсальным технологическим методом производства биотоплива. С помощью этого метода можно в очень широких пределах управлять соотношением твердой (древесный уголь), жидкой (бионефть) и газообразной (пиролизный газ) фракций продуктов переработки растительного сырья, изменяя температуру и продолжительность процесса. Любая из этих фракций пригодна для комбинированного производства тепла и электроэнергии тем или иным известным способом, из которых наиболее традиционным является сжигание в паровых котлах с последующим преобразованием энергии пара в электричество в паровых турбинах.

Газовые турбины имеют самый высокий КПД, однако эффективно они используются при мощностях более 500 кВт(э). При меньших мощностях используются дизельные или бензиновые двигатели внутреннего сгорания, которые могут быть успешно адаптированы для работы на пиролизном топливе.

Автономные мини-ТЭС на биотопливе включают модуль пиролиза и дизель-генераторный агрегат. Основными элементами модуля пиролиза являются реактор, в котором органические компоненты исходного растительного сырья при нагреве разлагаются с образованием и переходом в паровую фазу более легких соединений, и конденсатор, в котором часть парообразных продуктов, охлаждаясь, переходит в жидкое состояние (бионефть). Несконденсировавшаяся часть продуктов образует пиролизный газ. Отношение массы жидкого продукта к массе газообразного может варьироваться от 0,1 до 5 в зависимости от температуры и продолжительности термохимического процесса. Кроме жидкой и газообразной фракций реактор производит некоторое количество твердого продукта, который по своим физико-химическим свойствам близок к древесному углю. Термохимический процесс является энергозатратным. Значительная часть энергии, подводимой к реактору извне, расходуется на нагрев и испарение влаги, содержащейся в растительной биомассе. Включение камеры предварительного удаления влаги в состав модуля пиролиза позволяет значительно снизить общие энергозатраты при производстве биотоплива.

На рис.5.5 показана функциональная схема мини-ТЭС, включающая в себя модуль пиролиза и дизель-генераторный агрегат.

Схема мини-ТЭС
Рис. 5.5. Схема мини-ТЭС: 1 — реактор пиролиза; 2 — конденсатор; 3 — фильтр тонкой очистки; 4 — бионефть; 5 — теплообменник; 6 — ДВС; 7 — растительное сырье; 8 — древесный уголь; 9 — дизельное топливо (15%); 10 — электроэнергия; 11 — холодная вода; 12 — горячая вода

Весь вырабатываемый модулем пиролиза газ через фильтр тонкой очистки подается в ДВС электрогенераторного агрегата. Бионефть собирается в емкость, откуда часть ее возвращается в модуль пиролиза для сжигания и поддержания требуемой температуры в реакторе. Тепло, выделившееся в конденсаторе, а также отработанных газов ДВС утилизируется в теплообменнике для производства горячей воды. При необходимости излишки бионефти также могут быть использованы в качестве печного топлива в системе теплоснабжения и обеспечения потребителей горячей водой. Древесный уголь может применяться в качестве как топлива, так и сырья для производства стали, адсорбционных фильтров и т.д.