Геотермальная энергетика

Экологические аспекты использования геотермальной энергии

Освоение геотермальных месторождений так или иначе связано с воздействием на окружающую среду. Потенциальное воздействие на окружающую среду включает выделение газов и частиц, изменение и оседание почвы, сейсмическую активность, загрязнение поверхностных и грунтовых вод, шумовые, биологические и социальные воздействия.

За редким исключением термальные воды характеризуются высокой минерализацией и после использования не могут быть сброшены в поверхностные водоемы. Если не обеспечить достаточно хорошее перемешивание, то даже сброс в море может привести к отрицательным локальным эффектам, когда отработанные воды существенно отличаются по своему составу от морской воды.

Побочными продуктами геотермальных скважин являются растворенные газы (углекислый газ, метан, сероводород, инертные газы, водород, аммиак и др.), токсичные микрокомпоненты (соединения бора, мышьяка, ртути и др.), органические соединения (фенолы, летучие компоненты), которые также при свободном выбросе загрязняют прилегающие к месторождению земли, водные источники и воздух.

Необходимо учесть и тепловое загрязнение окружающей среды. Причем, чем ниже КПД теплоэнергетической установки, тем больше тепла отводится в окружающую среду. Сброс в поверхностные водоемы большого объема отработанных термальных вод с достаточно высокой температурой (до 60 ºC и более на некоторых месторождениях), приведет к локальному тепловому загрязнению и отрицательным последствиям в окружающей среде. Так, например, повышение температуры воды в реках всего на 1°C может привести к увеличению потребления кислорода биоорганизмами на 10–20%. А это может вызвать дефицит кислорода в воде со всеми вытекающими отсюда нежелательными последствиями. Вследствие повышения температуры воды в водоеме или водотоке изменяется видовой состав флоры и фауны, увеличивается количество биомассы, разлагаются растительные остатки, уменьшается содержание в воде кислорода, ухудшается ее качество и деградирует экосистема.

Степень воздействия геотермальных объектов на окружающую среду в большинстве случаев пропорциональна масштабам таких объектов. Факторы экологического воздействия, возникающие при бурении скважин, являются главным источником возможных экологических проблем в период реализации проекта. В процессе эксплуатации большинство потенциальных экологических проблем может быть предотвращено, если применяются замкнутые системы с теплообменниками, бинарными циклами и технологией обратной закачки отработанного теплоносителя (ГЦС).

Первое заметное воздействие на окружающую среду проявляется при бурении скважин. Установка буровой вышки и всего вспомогательного оборудования требует строительства подъездных дорог и сооружения буровой площадки. Эти работы приводят к изменению морфологии поверхности на участке и могут нанести ущерб местной флоре и фауне. С использованием современных методов наклонного и горизонтального бурения эти воздействия могут быть сведены до минимума. Возможность бурения нескольких скважин с одной площадки сокращает необходимый землеотвод для сооружения подъездных дорог и трубопроводов.

Неверная оценка гидрогеологических условий и несовершенные методы бурения могут приводить к загрязнению подземных водоносных горизонтов с питьевой водой. В результате выбросов могут загрязняться и поверхностные водоемы. В процессе бурения или гидродинамического исследования скважин возможны также нежелательные выбросы газов в атмосферу. Воздействие на окружающую среду, вызванное бурением, по большей части прекращается с окончанием строительства геотермальных скважин.

Монтаж трубопроводов для транспортировки геотермальных флюидов и сооружение утилизационных установок также отражается на флоре и фауне, приводит к нарушению морфологии поверхности. Неизбежны визуальные изменения ландшафта.

Экологические проблемы возникают также и в ходе эксплуатации геотермальных энергоустановок. Растворенные в геотермальном флюиде различные газы и вещества минерального и органического происхождения при попадании в окружающую среду становятся источником загрязнения. Содержание неконденсирующихся газов на геотермальных месторождениях обычно не превышает 0,1–1,0 % мас. от общего расхода геотермального теплоносителя.

Производство электроэнергии на геотермальных электростанциях может быть связано с загрязнением атмосферного воздуха. Однако при одинаковом уровне выработки электроэнергии объемы выбросов углекислого газа от геотермальных электростанций могут варьировать от нуля до незначительной процентной доли объемов выбросов электростанций, работающих на органическом топливе, в зависимости от применяемой технологии (таблице 1).

Таблица 1. — Выбросы диоксида углерода CO2 при сжигании различных видов топлива

УгольМазутПриродный газМаксимальный выброс на ГеоЭСНовые геотермальные установки
CO2, кг/МВт·ч9007503800,020,00

В последние годы в геотермальной энергетике разработаны экологически чистые технологии выработки электричества и тепла. Современные ГеоЭС исключают прямой контакт геотермального флюида с окружающей средой и выбросы вредных газов в атмосферу. Примером экологически чистой электростанции является Верхне-Мутновская ГеоЭС, тепловая схема которой позволяет использовать геотермальный теплоноситель с исключением его прямого контакта с окружающей средой. В технологической схеме используются воздушные конденсаторы и система полной закачки отработанного теплоносителя обратно в пласт. Неконденсирующиеся газы, содержащиеся в геотермальном паре, удаляются с помощью эжектора, затем растворяются в воде и далее вместе с водой также закачиваются в землю.

В ГеоЭС с бинарным циклом, где используется замкнутый цикл с какой-либо низкокипящей жидкостью в качестве рабочего тела, не допускают отделения паровой фракции из геотермального флюида, диоксид углерода и другие газы пребывают в растворенном состоянии и возвращаются в резервуар при обратном нагнетании.

К сожалению, на большинстве геотермальных месторождений до сих пор используются устаревшие технологии утилизации теплового потенциала термальной воды, когда отработанный флюид сбрасывается на земную поверхность или в водные объекты вблизи месторождения.

Например, в Дагестане с 1966 по 2005 гг. по оценочным данным с отработанной водой в окружающую среду сброшено более 200 тыс. т минеральных солей, огромное количество токсичных элементов, различных газов и летучих отравляющих компонентов. Главной экологической проблемой геотермальной энергетики Северокавказского региона является высокое содержание фенолов, содержание которых в водах отдельных скважин и месторождений на несколько порядков превышает предельно допустимые концентрации (ПДК = 0,001 мг/л). Содержание фенолов в зависимости от месторождения колеблется от 0,2 (Новогрозненское) до 22,5 мг/л (Махачкала-Тернаирское).

В ИПГ ДНЦ РАН для Махачкала-Тернаирского месторождения разработан метод адсорбционной очистки термальных вод от фенолов. Метод был сначала апробирован на пилотной установке, а затем на опытно-промышленной производительностью 500 м3/сут. Однако на практике промышленные установки по обесфеноливанию не были реализованы и отработанные воды с высоким содержанием фенолов продолжают отравлять окружающую среду.

Непоправимый экологический ущерб наносится при неуправляемом аварийном выбросе высокоминерализованного геотермального флюид, содержащего значительное количество токсичных компонентов. Примером служит Берикейское месторождение, где в 1950-е гг. в результате аварии скважины образовалось проточное озеро редкометальных гидротерм, в которое разгружаются более сотни грифонов. Воды этих грифонов имеют минерализацию 70–75 г/л и содержат фенолов до 8 мг/л, в том числе до 0,6 мг/л летучих компонентов. За 50 лет этими грифонами в акваторию Каспийского моря вынесено более 9 млн т минеральных солей и токсичных компонентов. Комплексное освоение месторождения путем утилизации теплового потенциала и извлечения минеральных солей позволит разрешить острую экологическую проблему, возникшую на месторождении в результате аварии скважины и ее провала.

Серьезный ущерб окружающей среде наносит нерациональное использование низкопотенциальных (20–35 ºC) подземных артезианских вод. Только в пределах Равнинного и Предгорного Дагестана эксплуатируются более 3000 самоизливающихся скважин, суммарный дебит которых составляет 650–700 тыс. м3/сут. С пользой используется не более 10–15% этих вод, остальная часть сбрасывается на прилегающие земельные участки, что приводит к подъему уровня грунтовых вод, заболачиванию и засолению значительных массивов почвогрунтов и выходу из сельскохозяйственного оборота сотен гектаров плодородных земель ежегодно. Одновременно происходит снижение дебитов и напоров скважин, нередки случаи подсоса минерализованных вод из смежных горизонтов, что приводит к ухудшению качества исходной воды. Для предотвращения негативных последствий скважины необходимо перевести на регулируемый крановый режим эксплуатации с отбором потребного количества воды.

Влияние геотермальной энергетики на окружающую среду зависит как от технологии извлечения геотермального флюида, так и технологии утилизации его теплового, водоресурсного и химического потенциалов. Технологии на основе геотермальных циркуляционных систем с использованием одноконтурных и бинарных ГеоЭС, двухконтурных систем теплоснабжения и систем на основе тепловых насосов с использованием современного оборудования являются экологически чистыми технологиями.

Метки