Биотопливо

Газовое биотопливо для двигателей внутреннего сгорания

Существуют различные способы получения газового биотоплива, пригодного для использования в ДВС. Наиболее известные способы представлены на рисунке 3.13. Получаемые при этом виды газообразных продуктов является аналогом природного газа или сжиженной пропанобутановой смеси, широко используемых в настоящее время во всем мире.

Технологии получения газового биотоплива
Рисунок 3.13. Технологии получения газового биотоплива

Биогаз

В зависимости от физико-химических свойств исходного сырья и специфики реализуемого производственного цикла, сбраживание биомассы влажностью 80-90 % позволяет получить биогаз, содержащий от 55 % до 75 % метана при содержании балластных (негорючих) компонентов 25-45 %, – преимущественно углекислого газа. Теплотворная способность биогаза такого состава лежит в пределах 20-30 МДж/кг и определяется концентрацией метана в его составе. Это, в среднем, вдвое меньше, чем у ископаемого природного газа.

Область применения биогаза как моторного топлива, по всей видимости, довольно ограничена и определяется экономической целесообразностью перевода некоторой части транспортных средств конкретного хозяйства на биогазовое топливо. Ввиду того, что биохимический процесс протекает очень медленно, создание бортовых генераторов биогаза, подобных газогенераторным установкам, не имеет практического смысла. Единственное приемлемое в определенны случаях решение, это использование баллонов высокого давления. В мире и России имеется положительный опыт эксплуатации городского транспорта на баллонном газе.

В случае биогаза запас хода транспортного средства вдвое меньше при прочих равных условиях, поэтому данное применение оправдано лишь на ограниченной территории. Наиболее оптимально такой вариант можно было бы реализовать на вспомогательных транспортных операциях животноводческой фермы, т. е. в непосредственной близости от биогазовых установок большой производительности, используемых в целях утилизации органических отходов предприятия.

Пиролизный (генераторный) газ

Пиролизный, или «генераторный», газ получают термическим разложением органического вещества без доступа воздуха при достаточно продолжительном воздействии высокой температуры на первичные продукты, перешедшие в паро-газовую фазу.

В качестве моторного топлива генераторный газ начали широко использовать в первой половине прошлого столетия, когда рост добычи и перегонки нефти значительно отставал от темпов развития производства автомобилей. Часто проблема дефицита жидкого моторного топлива решалась путем установки на транспортные средства газогенераторных агрегатов, работавших преимущественно на древесном топливе. В начале Второй мировой войны в Европе эксплуатировалось более миллиона транспортных единиц, оборудованных газогенераторами.

В реакторе газогенератора, где температура находится в диапазоне 800-1500 °С органические компоненты сырья разлагаются. В качестве топлива в газогенераторном реакторе, получившем название «слоевого», применялись сухие чурки лиственных пород или древесный уголь. Источником энергии, необходимой для поддержания высокой температуры в реакторе является слой, в котором происходит частичное окисление органической массы поступающим в небольших количествах кислорода воздуха. В результате сложных окислительно-восстановительных реакций в присутствии воды, являющейся неотъемлемым компонентом растительной биомассы, образуется до 85 % генераторного газа, состоящего, преимущественно из моноокиси углерода, водорода и балластных газов – углекислого газа и азота. Доля древесного угля и пиролизной жидкости составляют примерно 10 % и 5 %, соответственно.

Эффективность процесса газификации, равная отношению теплотворной способности единицы массы полученного газа к калорийности единицы массы исходного органического при использовании воздушного дутья составляет около 70 %. Путем повышения давления и применения парокислородного дутья этот показатель может быть увеличен до 90-95 %.

Из-за присутствия в генераторном газе, полученном таким методом, значительной доли балласта, калорийность генераторного газа, получаемого в таком реакторе, низкая (менее 5 кДж/кг). Это является основной причиной падения мощности ДВС примерно на 60 % при работе на генераторном газе по сравнению с обычным режимом. В современных ДВС за счет более высокой степени сжатия удается компенсировать падение мощности до величины 35 %.

Биоводород

Сегодня в массовых средствах информации часто можно встретить утверждение о том, что водородные технологии в энергетике решают проблему загрязнения окружающей среды. Действительно, при сжигании водорода в котле или камере сгорания ДВС в атмосферу не попадает двуокись углерода и другие парниковые газы, поскольку продуктом реакции водорода с кислородом воздуха является вода.

Однако, фактически, влияние водородного топлива на окружающую среду определяется на стадии его использования, а на стадии производства. Существуют различные промышленные способы получения водорода. В настоящее время объем мирового производства водорода приближается к 50 млн. т. Примерно 48 % этого объема обеспечивается за счет переработки природного газа, 30 % получают из нефти, и 18 % – из угля. При этом в атмосферу поступает большое количество СО2.

Соответственно, на долю других способов получения водорода приходится менее 5 % общего объема. К таким способам относится, например, электролиз воды. Хотя при электролизе потребляется значительное количество энергии, этот метод, казалось бы, можно было отнести к «чистым» способам производства водорода. На самом деле все зависит от того, какой первичный источник используется при выработке электроэнергии. Известно, что доля ВИЭ в мировом энергобалансе составляет примерно 2,5 %, из которых около половины покрывает биоэнергетика.

Если даже предположить, что вся биомасса энергетического назначения расходуется на электрогенерацию, то доля «зеленой» электроэнергии не превысит 0,45 % (если в оценку заложить электрический КПД порядка 30-40 %). Таким образом, найти в распределительной электросети «зеленую» энергию, чтобы произвести с ее помощью «экологически чистый» водород, практически, не представляется возможным. Поэтому при производстве биоводорода электролизным методом следует использовать электроэнергию, вырабатываемую с помощью возобновляемых источников, таких как фотоэлектрические солнечные преобразователи, ветровые и гидроэлектростанции.

В качестве одной из альтернативных технологий производства водорода рассматривают его выделение из пиролизного газа, полученного в результате термохимической переработки биомассы. Также можно получить водород известными из школьного курса физики химическими методами в реакции металла с водой (Na, K) или щелочью (Al, Si). Однако используемый при этом металл должен иметь «зеленую» природу. Такие металлы можно получить, например, из природных минералов путем восстановления углеродом, содержащимся в возобновляемом растительном сырье.

В настоящее время интенсивно ведутся исследования в области разработки биохимических способов производства водорода с помощью микроорганизмов. В частности, установлено, что некоторые бактерии (такие как Enterobacter cloacae, Rodobacter speriodes) вырабатывают водород как продукт жизнедеятельно сти, разлагая при этом полисахариды (целлюлозу, крахмал и т. п.). Ведутся работы по ускорению этого процесса под действием различных ферментов.

Также известно, что в условиях дефицита определенных субстратных биогенных элементов микроводоросли могут замедлять процесс фотосинтеза и начинают вместо углекислоты выделять водород. Это свойство проявляют, в частности, зеленые водоросли (например, Chlamydomonas reinhardtii).

В то же время, применение водорода, независимо от его происхождения, сопряжено с определенными техническими и организационными трудностями. Главная проблема состоит в отсутствии в настоящее время надежных бортовых накопителей достаточной емкости. Водород является одним из самых взрывоопасных газов. Считается, что он образует взрывоопасные смеси с воздухом в диапазоне концентраций от 4 % до 75 % по объему, однако согласно исследованиям конца 80-х годов он может быть взрывоопасен и при меньшей концентрации.

Хотя удельная теплота сгорания водорода в расчете на единицу массы более чем в 2,6 раза превосходит теплоту сгорания бензина, ввиду его малой объемной плотности, один литр водорода при атмосферном давлении может отдать при сжигании всего лишь 10 кДж энергии, в то время как 1 л бензина при сжигании производит более 37 МДж. Если даже закачать водород в баллон под высоким давлением (20 МПа), то 1 л объема баллона будет содержать количество горючего, эквивалентное всего лишь 2 МДж.

Одним из решений задачи создания емкого водородного аккумулятора исследователь увидели в применении металлгидридной технологии, основанной на том, что некоторые металлы (в частности, магний) способны связывать водород. Так, при температуре 400-500 °С под давлением 40 МПа удается «закачать» в магний водород в количестве 6 % от массы самого металла. Также проводились эксперименты по созданию аккумуляторов на основе сплава титана и железа.

Другое, возможно перспективное, решение состоит в том, что в качестве аккумулятора водорода используют намотанный на бабину капилляр внутренним диаметром порядка 100 мкм из стекла или иного материала. Водород в в таком аккумуляторе удерживается силами поверхностного натяжения и имеет плотность, многократно превышающую плотность в баллоне высокого давления.

Так или иначе, проблема создания водородного аккумулятора остается ключевой. Кроме того, широкомасштабное освоение биоводородного топлива потребует развития соответствующей инфраструктуры.

Плазмогаз

Плазмогазом называют газообразный продукт плазмохимического разложения органического вещества, взвешенного в водной среде. Принцип получения плазмогаза поясняет схема одного из вариантов технологической установки, показанная на рисунке 3.14.

Установка получения плазмогаза
Рисунок 3.14. Установка получения плазмогаза: 1 – реактор, 2 – электродная система, 3 – гидронасос, 4 – гомогенизатор, 5 – источник напряжения, 6 – коллектор, 7 – циклон

Установка содержит герметичный реактор 1, в котором размещена система плоских электродов 2 с отверстиями. С помощью гидронасоса 3 внутрь реактора подают смесь органической массы с водой. В качестве органического вещества можт применяться практически любое углеродосодержащее возобновляемое сырье (например, растительная биомасса или отходы животноводства). Смесь предварительно проходит через гомогенизатор 4, где подвергается кавитационной обработке с целью получения ультрадисперсной взвеси под с помощью встроенного в гомогенизатор гидродинамического или/и ультразвукового устройства. Образующийся в результате плазмоимической обработки плазмогаз через коллектор 6 поступает в циклон 7 для очистки, откуда его отбирают для закачки в баллоны под давлением. Не переработанная водно-органическая взвесь возвращается в цикл прокачки через реактор.

Конверсия водно-органической смеси в плазмогаз происходит под действием электродугового разряда, возникающего в межэлектродном пространстве, где образуются нейтральные и электрически заряженные химически активные радикалы, инициирующие сложные цепные реакции разложения высокомолекулярных компонентов. Одновременно имеет место диссоциация молекул воды и взаимодействие ионов с продуктами плазмохимической деструкции органической массы. Согласно химической формуле:

C6H10O5 + H2O → 6H2 + 6CO,

при переработке смеси чистой целлюлозы и воды образовавшийся плазмогаз должен состоять из водорода и угарного газа в равных объемах, что в массовом выражении соответствует примерно 7 % H2 и 93 % CO. Однако, в зависимости от фактического компонентного состава сырья, плазмогаз может содержать различные объемные доли водорода, угарного газа и некоторых других газов. Так в результате переработки лигноцеллюлозы объемные доли газов могут колебаться в указанных ниже пределах:

H2 40-45 %

СО 55-60 %

СO2 1-2 %

Благодаря положительному балансу кислорода, при использовании плазмогаза газа такого состава в качестве моторного топлива достигается 5-кратное снижение вредных выбросов по сравнению с высокооктановым бензином.

Одним из важных преимуществ плазмогаза по сравнению с водородом является то, что он не взрывоопасен. Кроме того, он обеспечивает объемную плотность энергии на порядок выше, чем водород. Тем не менее, как и в случае водорода, отсутствие в настоящее время достаточно компактных бортовых топливных аккумуляторов ограничивает перспективы транспортного применения этого вида газового топлива.