Гидроэнергетика

Общая характеристика технических решений

По аналогии с ВЭУ существующие преобразователи энергии течений можно условно разделить на две группы. К первой целесообразно отнести те из них, в основу которых положен принцип преобразования скоростного напора во вращательное движение турбин. Ко второй, менее многочисленной, группе относят преобразователи, основанные на других физических принципах (объемные насосы, упругие преобразователи и др.).

Для характеристики схем установки преобразователей можно выделить две основные схемы – сооружений, закрепляемых на морском дне, и сооружений, плавающих в толще воды и заякоренных к дну.

Эволюция водяного колеса
Рис. 13.4.1. Эволюция водяного колеса: а – колесо-прототип; б – ленточное колесо на плавучем основании; в – ленточное колесо в толще потока; г – ленточное колесо со складными лопастями.

Родоначальником устройств первой группы по праву считают водяное колесо (рис. 13.4.1, а). В совершенствовании водяного колеса наблюдаются две основные тенденции. Одна – собственно улучшение показателей колеса (за счет оптимизации конструкции ферм, лопастей, механизмов передачи энергии, расположения по отношению к потоку, применения современных материалов и т.п.), другая – принципиальное изменение представлений о колесе.

Ленточное колесо (рис. 13.4.1, б) оказывается более компактным, требует меньше материалов, менее подвержено воздействию атмосферы. Подобное устройство может быть установлено в потоке на понтонах с таким расчетом, чтобы нижние лопасти входили в воду, а верхние оставались «сухими». Эффективность преобразования скоростного напора повышается за счет того, что сразу несколько лопастей оказываются под воздействием потока. Однако, простое увеличение числа лопастей ленточного колеса не приведет к существенному увеличению момента на валах.

На базе ленточного колеса созданы устройства, полностью погружаемые в толщу потоков (рис. 13.4.1, в, г). Для таких устройств предлагается несколько способов уменьшения сопротивления движению ленты во время холостого хода. Это и сооружение воздушной камеры над колесом и применение различных вариантов механизмов складывания лопастей.

Наибольшие надежды гидроэнергетики, занимающиеся разработкой преобразователей энергетики океанских течений, связывают с агрегатами, с помощью которых могут быть получены значительные единичные мощности. В качестве вариантов таких устройств рассматриваются рабочее колесо в виде свободного пропеллера, пропеллера в насадке, водяной аналог турбины Дарье, системы с управляемым крылом (рис. 13.4.2, а–в). Во всех этих конструкциях, так же как и у перспективных ветровых турбин, главный преобразующий элемент – крыловой профиль, обтекание которого потоком создает гидродинамическую силу, заставляющую турбины вращаться.

Варианты схем перспективных турбин для ОГЭС
13.4.2. Варианты схем перспективных турбин для ОГЭС: а – свободный ротор; б – ротор в насадке; в – ротор, устанавливаемый поперек потока.

Наилучшими показателями обладает турбина, выполненная в виде рабочего колеса с горизонтальной осью в насадке. Это объясняется тем, что такое рабочее колесо меньше возмущает поток, не так сильно, как свободное, вовлекая жидкость во вращательное движение. Насадок как бы отделяет возмущенную часть потока от невозмущенной и в то же время обеспечивает некоторую концентрацию энергии. Форму насадка выбирают из такого расчета, чтобы обеспечить плавное безотрывное течение потока на подходе к турбине, сделать всю систему устойчивой на потоке, максимально снизить завихренность потока на выходе из нее.

Увеличения мощности одного такого агрегата можно достигнуть за счет удлинения крыла. По сравнению с ветровыми преобразователями океанские турбины в этом плане имеют преимущество: критический размер крыла, при котором в нем достигается предел прочности материалов для такой турбины выше. Но есть ограничения и в воде: при слишком большой длине крыла на смену изгибающим моментам, создаваемым под воздействием силы тяжести, приходят моменты, создаваемые силой давления потока.

Другое ограничение диаметра рабочего колеса связано с технологическими трудностями при постройке и установке столь громоздких сооружений в океане. Специалисты сходятся во мнении, что диаметр турбин в насадках вряд ли превысит 200 м (по габаритам подобное сооружение напоминает крытый стадион на 20 тысяч зрителей). Накопленный к настоящему времени опыт строительства эксплуатационных платформ для добычи нефти и таза водоизмещением в сотни тысяч тонн показывает, что такие объекты могут быть созданы.

Схема объемного насоса
Рис. 13.2.3. Схема объемного насоса: 1 – профилированный корпус; 2 – шахта воздухозаборника; 3 – воздухосборник; 4 – выхлопная шахта; 5 – воздушная турбина с электрогенератором.

Рассмотрим преобразователи энергии потоков, относящиеся по нашей классификации ко второй группе, и, прежде всего, устройства типа объемного насоса. На рис. 13.2.3 изображена одна из схем такого устройства, в основе которого – неподвижно закрепленное в потоке сопло Вентури. В пережатом сечении сопла из-за увеличения скорости жидкости происходит падение статического давления, которое может быть использовано, например, для засасывания воздуха с поверхности. В выходном сечении уже сжатый воздух вытесняется из потока в напорную камеру, откуда по ступает в воздуховод турбины, соединенной с электрогенератором. При умеренных степенях пережатия потока работа такого устройства может быть описана с помощью уравнения Бернулли. В этом случае перепад давлений, который создается насосом,

формула

где А12– отношение площадей входного и минимального сечений конфузора.

Производительность такого насоса зависит от расхода жидкости через сечение насоса и может быть доведена примерно до 20 % объемного расхода. Эжекционные свойства сильно зависят от способа ввода в поток подсасываемого газа.

Перечень различных вариантов преобразователей можно продолжить, но важно отметить, что со временем могут быть открыты как более эффективные способы преобразования энергии потоков в океане, так и новые гидродинамические явления, которые потребуют принципиально новых разработок. Уже сейчас можно обратить внимание на энергию океанских противотечений, скрытых толщей поверхностных вод и часто лишь достаточно тонкими пограничными слоями отделенных от поверхностных; энергию различных вихрей, возникающих в открытом океане под воздействием метеорологических возмущений и крупномасштабной гидродинамической неустойчивости в океанах. Известны даже постоянно действующие вихри. Один из них находится в 400 км от Огасавары (Япония) в Тихом океане. Он представляет собой водоворот диаметром около 200 км, поднимающийся с глубины 3 км почти до самой поверхности. Примечательна одна из особенностей водоворота – примерно через каждые 100 дней он изменяет направление вращения на обратное. По оценкам японских ученых удельные энергетические характеристики этого водоворота значительно выше, чем у ряда океанских течений.