Водородная энергетика

Получение водорода

Для получения водорода в данный момент существует множество различных путей из ряда известных источников, как показано на рисунке 1.3.

Возможные источники и пути получения водорода
Рис. 1.3 Возможные источники и пути получения водорода

Среди источников получения водорода можно выделить природное топливо: метан, уголь, древесина, нефтепродукты, техногенные горючие газы. При взаимодействии топлива с парами воды или воздухом образуется синтез-газ — смесь СО и Н2. Из нее затем выделяется водород. Другой источник — отходы сельскохозяйственного производства, из которых получают биогаз, а затем — синтез-газ. Промышленнобытовые отходы тоже используются для производства синтез-газа, что способствует одновременно и решению экологических проблем, поскольку отходов много и их нужно утилизировать. В конечном счете образуются углекислый газ, водород и окись углерода. Дальше идет каталитическая очистка, электрохимическая конверсия и т. д. Очень важным элементом при преобразовании газа, содержащего водород, является очистка газа на палладиевых мембранах. В конечном счете получается чистый водород. Водород можно получать также электролизом воды, то есть разложением ее под воздействием электрического тока, получаемого от различных источников энергии. Для получения электрической энергии используются ветровой генератор, фотогальванические элементы, сеть переменного тока и энергия солнца, которые являются возобновляемыми источниками. В дальнейшем полученный водород поступает в системы хранения или транспортируется к потребителям.

Технологии получения водорода

В настоящее время разработано множество способов производства водорода.

Для получения водорода его не нужно добывать, необходимо разорвать химические связи в углеводородах или воде и выделить его из реакционной смеси. Одним из устройств для получения водорода является паровой реформер, для которого существуют различные варианты питания. На рисунке 1.4 приведены варианты питания реформера.

Варианты питания реформера
Рис. 1.4. Варианты питания реформера: а — при паровом преобразовании; б — с частичным окислением, топливо реагирует с воздухом, выпуская высокую температуру; в — автотепловое преобразование

На рисунке 1.4, а показан вариант питания реформера при паровом преобразовании. При преобразовании пара топливо реагирует с водой и высокой температурой, чтобы произвести водород. Частично окисляясь, топливо реагирует с воздухом, создавая высокую температуру в процессе, как показано на рисунке 1.4, б. Автотепловое преобразование (рис. 1.4, в) объединяет два процесса.

Моделирование производства водорода
Рис. 1.5 Моделирование производства водорода

На рисунке 1.5 представлено моделирование производства, очистки и модулей сжатия водорода.

Способы получения водорода

Конверсия природного газа

В настоящее время крупнотоннажное производство водорода и водородосодержащих продуктов осуществляется в мире в основном путем паровой конверсии метана, являющегося основным компонентом природного газа и содержащего 25 % водорода. Чтобы отделить водород от углеродной основы в метане, требуются пар и тепловая энергия при температурах 750—850 °С, что и происходит в химических паровых реформерах на каталитических поверхностях.

Первый шаг реакции расщепляет метан и водяной пар на водород и монооксид углерода (синтез-газ):

СН4 + Н2О ↔ СО + 3Н2 ‒ 206 кДж/моль.

Выход водорода увеличивается благодаря дополнительной реакции СО с водой при пониженных температурах в присутствии катализаторов. «Реакция сдвига» превращает монооксид углерода и воду в диоксид углерода и водород:

СО + Н2О ↔ СО2 + Н2 + 44 кДж/моль.

Эта реакция происходит при температурах 200—250 °С.

При осуществлении указанных реакций может быть извлечено около 96 % водорода, а необходимая теплота процесса получается при сжигании части природного газа. Производительность подобных установок достигает 4—12 тыс. м3 водорода в час.

С целью экономии природного газа и снижения загрязнения окружающей среды продуктами его сгорания, в России, США и Японии проводились и продолжают проводиться разработки технологии паровой конверсии метана с подводом тепла от высокотемпературного гелиевого реактора (ВТГР). Высокотемпературные реакторы с гелиевым теплоносителем способны вырабатывать тепло с температурой около 1000 °С, которое может быть использовано для производства электроэнергии с высоким КПД в прямом газотурбинном цикле и для снабжения высокотемпературным теплом и электричеством процессов производства водорода, технологических процессов химической, нефтеперерабатывающей, металлургической и других отраслей промышленности и опреснения воды. Такой комплекс состоит из ядерной части, вырабатывающей синтез-газ, который транспортируется к технологической части производства, где применяется для выработки конечной продукции.

Возможно использование и жидкометаллических быстрых реакторов. Например, действующий российский реактор БН-600 имеет параметры пара на выходе из РБН (13,2 МПа и 500 °С), близкие к тем, которые требуются для конверсии метана.

Для достижения полного соответствия температуры пара рабочей температуре 850 °С предлагается осуществить дополнительный нагрев парогазовой смеси сжиганием части подводимого к реформеру природного газа.

В дальнейшей перспективе, в случае создания высокотемпературных (800—850 °С) быстрых реакторов со свинцовым теплоносителем, доля сжигаемого углеродного топлива может быть сокращена или полностью замещена атомным теплом.

В  РНЦ «Курчатовский институт» выполнены исследования плазменной конверсии метана в синтез-газ. Эта технология может быть применена на заправочных станциях или на борту водородных автомобилей при использовании обычного жидкого или газообразного топлива.

В настоящее время паровая конверсия метана является наиболее рентабельным способом производства водорода.

В последние годы особое внимание обращают еще на один важный природный источник метана — Мировой океан. Когда метан, поднимаясь из недр земли, встречается с водой, просочившейся сквозь трещины земной коры, он сразу остывает. При этом образуется вещество, похожее на лед, — гидрат метана. Это горючее вещество, его запасы превышают запасы нефти, угля и природного газа, вместе взятые. В условиях истощения запасов привычных видов топлива оно может сыграть весьма положительную роль в энергетике, но его использование может привести к изменению климата. Хранилища метангидрата не только труднодоступны, но и таят опасность неконтролируемого внезапного выхода метана на поверхность океана в случае нарушения сохраняющегося в них равновесия внешних и внутренних параметров. Такой риск существует даже в условиях естественно протекающих природных процессов и возрастает в связи глобальным потеплением.

Газификация угля

Газификация — процесс высокотемпературного взаимодействия горючих ископаемых, в рассматриваемом случае — угля, с парами воды, кислородом, диоксидом углерода или их смесями, с целью получения горючих газов: Н2, СО, СH4. Они могут использоваться как топливо и как сырье для химической промышленности. Газифицироваться могут практически все виды газообразных, жидких и твердых топлив. Выбор сырья для процесса обычно бывает обусловлен экономическими соображениями, а иногда — направлением дальнейшей переработки образующейся газовой смеси.

Процессы, в которых образуются смеси продуктов газификации, очень разнообразны и составляют сложную систему последовательно-параллельных обратимых и необратимых реакций, среди которых есть и экзо-, и эндотермические.

Считается, что реакциям собственно газификации предшествует пиролиз угля с выделением летучих веществ и образованием твердого обуглероженного остатка (кокса). Газифицирующие агенты реагируют затем с газообразными продуктами пиролиза и частицами кокса. Большая часть этих реакций обратима, за исключением окислительных, проходящих с участием молекулярного кислорода.

В настоящее время распространен способ производства водорода из водяного и паровоздушного газов, получаемых газификацией угля. Процесс основан на конверсии окиси углерода. Водяной газ содержит до 50 % Н2 и 40 % СО; в паровоздушном газе, кроме Н2 и СО, имеется значительное количество N2, который используется вместе с получаемым водородом для синтеза NН3. Из коксового газа водород выделяют путем удаления остальных компонентов газовой смеси, сжижаемых более легко, чем водород, при глубоком охлаждении.

Процесс превращения твердого топлива в горючий газ известен с 1670 г. За последние 150 лет техника газификации достигла высокого уровня и широко развита. В настоящее время существует более 70 типов газогенераторных процессов, часть которых используется в промышленных масштабах. Это объясняется прежде всего различием физических и химических свойств угля из разных месторождений: по элементарному составу, происхождению, содержанию летучих веществ, содержанию и составу золы, влажности, соотношению Н/С в угольной массе, спекаемости углей, их термической стойкости. Не менее существенным является и различие во фракционном составе добываемых углей: крупнокусковой уголь, угольная мелочь, топливная пыль.

Наконец, различаются требования к получаемому конечному продукту:

  • генераторный (энергетический) газ с теплотой сгорания 3800—4600 кДж/нм3;
  • синтез-газ (технологический) для химической технологии с теплотой сгорания 10 900—12 600 кДж/нм3;
  • восстановительный газ (для металлургических и машиностроительных производств) с теплотой сгорания 12 600—16 800 кДж/нм3;
  • городской газ (отопительный) с теплотой сгорания 16 800— 21 000 кДж/нм3;
  • синтетический природный (богатый) газ для транспортировки на дальние расстояния — 25 000—38 000 кДж/нм3.

При всем своем многообразии процессы газификации делят на два основных класса:

  • Автотермические процессы газификации, в которых тепло, необходимое для проведения эндотермических процессов, для нагрева газифицируемого материала и газифицирующих средств до температуры газификации (900—1200 °С), производят за счет сжигания в кислороде части газифицируемого топлива до диоксида углерода. В автотермических процессах сжигание части топлива и газификация протекают совместно в едином газогенераторном объеме.
  • Аллотермические процессы газификации, в которых сжигание и газификация разделены, и тепло для обеспечения прохождения процесса газификации подводится через теплопередающую стенку внутри единого газогенераторного объема или при помощи автономно нагретого теплоносителя, который вводится в газифицируемую среду.

Как автотермические, так и аллотермические процессы газификации в зависимости от зернистости топлива могут протекать в плотном и «кипящем» слоях (крупнокусковое топливо), в аэрозольном потоке (топливная пыль). Эти принципы проведения гетерогенных процессов, разработанные в газогенераторной технике, получили широкое применение в химической технологии при проведении, например, гетерогенных каталитических процессов.

Состав газов в процессе газификации
Таблица 1.4 Состав газов в процессе газификации

Типичные составы газов, полученных в автотермических и аллотермических процессах, приведены в таблице 1.4.

Подземная газификация угля

Выбросы тепловых электростанций, использующих уголь, могут содержать естественные радионуклиды элементов. Эти радиоактивные элементы есть и в золе, выбрасываемой через трубы вместе с дымовыми газами. Если дымовые газы очищать от золы с эффективностью даже 98,5 %, что имеет место лишь на некоторых наиболее современных ТЭС и является очень дорогостоящим процессом, то и в этом случае доза облучения, обусловленная естественными радионуклидами в выбросах тепловых электростанций, превысит аналогичную дозу, полученную населением, живущим вблизи АЭС такой же мощности, в 5 и даже в 40 раз.

Можно полагать, что единственным методом, который даст возможность использовать угольные месторождения для получения тепла и электроэнергии с большей радиационной безопасностью, является реализация идеи Рамзая — Менделеева о подземной газификации углей и очистке полученных газов в подземных газогенераторах.

Преимущество подземной газификации состоит также и в том, что в ней исключается тяжелый и очень вредный труд горнорабочих. Транспортировка, погрузка, разгрузка и дробление угля, требующие больших энергетических затрат и загрязняющие топливной пылью окружающую среду, заменяются безвредной и простой транспортировкой очищенного горючего газа в места его непосредственного использования. Подземная газификация в экологическом плане предпочтительнее и открытой добычи угля в угольных разрезах, так как при последней нарушается верхний покров Земли. Наконец, подземная газификация предоставляет широкие возможности для автоматизации процесса.

Получение водорода из аммиака

Реакция термокаталитической диссоциации аммиака имеет вид:

2NН3 ↔ М2 + 3Н2 ‒ 92 кДж/моль.

Эта реакция характеризуется достаточно высоким выходом водорода (примерно 17,6 %) на один килограмм аммиака. Массовое содержание водорода в единице объема жидкого аммиака в 1,5 раза превышает плотность жидкого водорода. Аммиак удобно хранить в емкостях в жидком состоянии, при максимальной температуре забортной воды 32 °С, под небольшим давлением порядка 1,5 МПа.

Разложение аммиака начинается при температуре 270 °С, а при температуре 900 °С он практически полностью диссоциирует.

В установках для получения водорода диссоциацией аммиака применяют катализаторы на основе окислов железа, и процесс проводят при температуре 600—700 °С. В результате диссоциации получается газовая смесь с объемным содержанием 75 % Н2 и 25 % N2 при атмосферном давлении. Энергозатраты на реакцию составляют 25—27 % от низшей теплоты сгорания получаемого водорода.

Получение водорода из метанола

Эндотермическая реакция разложения метанола происходит с использованием гетерогенного катализатора при температуре, лежащей в диапазоне 500—700 °С, и описывается уравнением:

СН3ОН ↔ СО + 2Н2 ‒ 90 кДж/моль.

Удельный выход водорода по этой реакции — 0,125  кг/кг СH3ОН. Поскольку плотность метанола достигает приблизительно 700 кг/м3, объемный выход водорода будет составлять 87 кг/м.

Для получения водорода из метанола может использоваться процесс паровой конверсии:

СH3ОН + Н2O ↔ СO2 + 3Н2 ‒ 49 кДж/моль.

Обычно для процесса применяют цинк-хромовый катализатор. Процесс протекает при 573—673 К. Метанол можно использовать как горючее для процессов конверсии. В этом случае КПД процесса получения водорода составляет 65—70 % (отношение теплоты полученного водорода к теплоте сгорания затраченного метанола); если теплота для процесса получения водорода подводится извне, то теплота сгорания водорода, полученного методом каталитического разложения, на 22 %, а водорода, полученного методом паровой конверсии, — на 15 % превосходят теплоту сгорания затраченного метанола.

К сказанному следует добавить, что при создании энерготехнологической схемы с использованием отходящего тепла и применением водорода, полученного из метанола, можно получить КПД процесса более высокий, чем при использовании указанных продуктов как синтетических жидких горючих. Так, при прямом сжигании метанола в газотурбинной установке КПД составляет 35 %, при проведении же за счет тепла отходящих газов испарения и каталитической конверсии метанола и сжигании смеси СО + Н2 КПД возрастает до 41,30 %, а при проведении паровой конверсии и сжигании полученного водорода — до 41,9 %.

Главным недостатком использования метанола как источника водорода является токсичность метанола.

Получение водорода из гидридов и боргидридов металлов

Весьма эффективным методом получения водорода из связанного состояния является гидролиз гидридов и боргидридов легких металлов. В таблице 1.5 приведены соответствующие данные для соединений, опытное промышленное производство которых можно считать освоенным.

Сравнительная характеристика гидридов и боргидридов легких металлов
Таблица 1.5 Сравнительная характеристика гидридов и боргидридов легких металлов

Как следует из анализа приведенных данных, наибольший выход водорода наблюдается при гидролизе боргидрида лития LiВН4. Однако использование этого вещества практически исключается из-за высокой пожароопасности, обусловленной значительной химической активностью.

Следующим по количеству выделяемого водорода элементом идет гидрид лития LiН. Ввиду того что плотность компактного гидрида лития составляет приблизительно 600 кг/м, боргидрида натрия NaВН4 — 1074 кг/м3, по объемному выходу водорода три гидрида — LiН, NaВН4 и LiАlН4 — примерно равноценны. Остальные гидриды существенно уступают перечисленным соединениям по удельному массовому и объемному выходу водорода.

Методы получения водорода из воды

Получение водорода из воды путем ее разложения гидрореагирующими металлами

При взаимодействии гидрореагирующих металлов с водой выделяется водород. Выход водорода в этих реакциях достаточно велик, и использование некоторых металлов может представлять практический интерес.

Тип реакции зависит от количества воды, а оно, в свою очередь, — от рабочих пара метров реактора (избытка воды по сравнению со стехиометрическим коэффициентом, давления, температуры).

Реакция (а) протекает при Т = 250 °С, Р = 8 МПа. Средняя скорость окисления алюминиевого порошка недостаточна для создания пригодного для использования в энергетических установках реактора.

Реакция (б) протекает при температуре Т  = 300—350  °С, Р = 16—18 МПа. Реакция идет достаточно быстро и поддается регулированию. Продуктом реакции, помимо водорода, является порошок с размером частиц от 1 до 5 мкм, которые не слипаются.

Реакция (в) протекает при температуре, превышающей 300— 350 °С, давлении Р = 20—30 МПа. Продуктом реакции, помимо водорода, является порошок, состоящий в основном из Al2O3, который может образовывать твердые агломераты, плохо растворимые в воде и откладывающиеся на стенках трубопроводов. Процесс трудноуправляемый и опасный. Проведенный анализ этих процессов позволил остановиться на реакции (б).

Поскольку скорость реакции растет с увеличением степени дисперсности порошка, желательно иметь максимально возможную дисперсность. Освоенные отечественной промышленностью марки порошков представлены в таблице 1.6.

Основные характеристики алюминиевых порошков
Таблица 1.6 Основные характеристики алюминиевых порошков

Удельный массовый выход водорода, отнесенный к 1 кг металла, составляет, согласно приведенным уравнениям, величину, приблизительно равную 11,1 % для алюминия. Это примерно в 2—3 раза ниже аналогичных значений для лучших гидридов.

Приведенные результаты свидетельствуют о том, что для транспортных установок этот метод труднореализуем вследствие неудовлетворительных массогабаритных характеристик и сложности технологической схемы установки.

Термохимическое разложение воды

Разложение воды только за счет теплоты без использования работы предполагает проведение процесса при очень высоких температурах (выше 3000 °С). Однако при связывании воды в некотором промежуточном состоянии с выделением кислорода и с дальнейшим термическим разложением удается понизить температуру данного процесса.

На этом и основаны термохимические способы получения водорода, заключающиеся в последовательном проведении нескольких химических реакций, одним из конечных продуктов которых является водород. Многостадийность процесса затрудняет его крупномасштабное промышленное осуществление. Достоинство его в том, что не требуется электроэнергии и осуществляется он при относительно невысоких температурах. Кроме того, все промежуточные реагенты в таких циклах, за исключением воды, регенерируются за счет потребляемого тепла, что удешевляет водородное топливо.

Интерес к использованию термохимических циклов объясняется перспективой получения достаточно высоких КПД (50— 60 %) в результате прямого использования теплоты высокотемпературного ядерного реактора, минуя стадию преобразования теплоты в электричество.

Однако для успешной реализации термохимического разложения воды требуются до полнительные исследования в области материаловедения, поскольку в настоящее время эта проблема окончательно еще не решена.

Электролиз воды

Разложение воды с  образованием газообразного водорода и кислорода при пропускании через воду электрического тока впервые было осуществлено Риттером в 1801 г.

Из-за низкой удельной электропроводности чистой воды ее прямой электролиз неэффективен, поэтому на практике обычно применяется водный раствор КОН. Эта щелочь обладает хорошей удельной электропроводностью, которая при нормальных темпера турах и концентрации 20—40 % достигает 0,3—0,5 Ом∙см‒1, то есть в 107 раз больше, чем в случае с чистой водой.

В щелочном растворе концентрация ионов водорода невелика, в результате чего их недостаток у катода восполняется за счет диссоциации молекул воды или их прямого разряда с образованием атомов водорода и ионов ОН с последующей рекомбинацией атомарного водорода в молекулы:

2O + 2е + Ме → Н2 + ОН‒ + Ме,

где Me — металл катода.

Выделение на аноде кислорода происходит в результате разряда гидроксильных ионов или молекул воды по реакциям:

2OН ‒ 2е → Н2O + (½)O2;

Н2O ‒ 2е → (½)O2 + 2Н+.

Основными переносчиками тока в КОН являются положительные ионы К+ и гидроксильные ионы ОН.

В последнее время при электролизе воды стали активно применяться твердые электролиты на основе ионообменных мембран, в которых электропроводность обеспечивается ионами водорода или кислорода. Такой метод разложения воды называется электролизом воды с твердополимерным электролитом и имеет ряд неоспоримых преимуществ по сравнению с традиционным электролизом воды.

Электролиз воды с использованием твердополимерного электролита (ТПЭ) является одним из наиболее перспективных методов как для промышленного крупномасштабного получения водорода, так и для решения широкого ряда специальных задач.

К достоинствам этого метода можно отнести:

  • небольшое расстояние между электродами (толщина ионообменной полимерной мембраны 50—300 мкм);
  • довольно низкое удельное сопротивление электролита (4— 20 Ом∙см‒1);
  • исключение дополнительных сепараторов газов.

Пиролиз биомассы

Процесс пиролиза может использоваться для производства водорода из биомассы, но предварительно биомасса должна быть обработана высокой температурой и давлением. Эти процедуры расчленяют и частично окисляют биомассу, которая далее очищается. Полный процесс подобен газификации угля, но тем не менее требует предварительной обработки. Для получения водорода также используются биологические организмы, производящие водород. Основными являются морские водоросли и бактерии. Морские водоросли используют обратимый фермент гидрогенес, чтобы произвести водород от протонов в анаэробных условиях.

Плазменная конверсия углеводородов

В российском научном центре «Курчатовский институт» выполнены исследования плазменной конверсии природного углеводородного топлива (метана, керосина в синтез-газ). Эта технология может быть применена на заправочных станциях или на борту водородных автомобилей при использовании обычного жидкого топлива. Разработаны также плазмохимические методы получения водорода с помощью высокочастотных и сверхвысокочастотных технологий с использованием в качестве сырья химических соединений, в которых водород находится в слабосвязанном состоянии, например сероводорода.

Технико-экономическое сравнение методов получения водорода

Из перечисленных выше способов получения водорода наиболее приемлемыми для целей энергетики являются способы получения водорода из таких видов исходного сырья, как метан, производные нефтеуглеводороды (дизельное топливо, бензин), искусственное топливо — метанол, в перспективе — каменный уголь. С этими способами конкурирует экологически более чистый, но более энергоемкий способ получения водорода — электролиз воды.

Для оценки сравнительной экономической эффективности способов получения водорода необходимо определить основные сопоставимые показатели: капиталовложения, годовые издержки производства и себестоимость единицы продукции, срок окупаемости дополнительных капиталовложений и приведенные затраты. Выполнение технико-экономических расчетов должно производиться с соблюдением определенных условий энергетической и  экономической сопоставимости рассматриваемых вариантов как по объему производства, так и по методу расчета. При этом необходимо выполнять следующие требования:

  • обеспечить одинаковый производственный эффект для потребителя водорода;
  • учесть изменение затрат в смежных отраслях народного хозяйства (в том числе затрат на добычу и транспортировку сырья в сравниваемых условиях);
  • оптимизировать каждый из сравниваемых вариантов по конструктивному исполнению и режиму эксплуатации;
  • обеспечить единство методов расчетов для всех случаев выбора оптимального варианта (планирование, проектирование, эксплуатация, строительство, реконструкция и т. д.);
  • представить экономические показатели, отражающие качественные и количественные характеристики каждого варианта, в стоимостном выражении;
  • осуществить нахождение оптимального решения путем сопоставления ряда возможных по выполнению взаимозаменяемых результатов;
  • использовать в качестве основного критерия оценки экономичности данного решения приведенные затраты или затраты за весь жизненный цикл с учетом фактора времени.

Необходимое количество тепловой энергии на производство 1 кг водорода рассчитывается в соответствии с химическими реакциями процессов генерации водорода. Для получения водорода в процессе электролиза расчет необходимой тепловой энергии выполнен применительно к атомной электростанции с моноблочным кипящим реактором типа «Бета» с коэффициентом полезного действия 30 %. Результаты расчетов приведены в таблице 1.7.

Количество тепловой энергии, необходимой для производства 1 кг водорода
Таблица 1.7 Количество тепловой энергии, необходимой для производства 1 кг водорода

Приведенные в таблице 1.7 данные показывают, что углеводородное сырье и аммиак требуют для получения 1 кг водорода приблизительно одинаковое количество тепловой энергии. В то же время в процессе электролиза количество потребляемой энергии на порядок больше и существенно (более чем в 2,5 раза) превышает высшую теплоту сгорания водорода.