Геотермальная энергетика

Ресурсы геотермальной энергии

Виды ресурсов и запасов геотермальной энергии

Геотермальная энергия — тепловая энергия Земли, выходящая из ее глубинных слоев в верхние поверхностные слои за счет теплопроводности твердых пород, а также в виде горячей воды или парогазовой смеси.

Геотермальные ресурсы подразделяются на гидрогеотермальные и петрогеотермальные. Гидрогеотермальные ресурсы являются частью ресурсов геотермальной энергии, которая заключена в естественных коллекторах и представлена природными динамическими носителями тепловой энергии недр — геотермальными водами (вода, пар, пароводяные смеси). Петрогеотермальные ресурсы представляют собой часть тепловой энергии, которая заключена в скелете водовмещающих пород и в практически водонепроницаемых сухих горных породах.

Из всех пригодных для использования геотермальных ресурсов на долю термальных вод приходится чуть более 1% и соответственно около 99% — на петрогеотермальные ресурсы. Практическое использование колоссальных запасов тепла петрогеотермальных ресурсов связано с необходимостью решения ряда весьма сложных научно-технических проблем проектирования и создания в промышленных масштабах эффективных подземных искусственных систем извлечения тепла — циркуляционных систем, тепловых котлов повышенной проницаемости. Поэтому на современном этапе развития техники и технологий освоения геотермальной энергии масштабы ее практического использования определяются размерами эксплуатационных запасов и теплоэнергетическим потенциалом термальных вод, т. е. величиной гидрогеотермальных ресурсов.

Используемые в настоящее время термины эксплуатационные запасы и прогнозные ресурсы гидрогеотермальной энергии — по существу, синонимы. Термин эксплуатационные запасы употребляется обычно при оценке возможности применения термальных вод для удовлетворения теплоэнергетических потребностей конкретных объектов. В тех случаях, когда оцениваются потенциальные возможности эксплуатации термальных вод в том или ином регионе, употребляется термин прогнозные ресурсы.

Прогнозные ресурсы гидрогеотермальной энергии — это максимальное количество природного теплоносителя и тепловой энергии, которые могут быть получены из системы условных водозаборов, размещенных относительно равномерно по всей оцениваемой площади при технико-экономических показателях добычи, обеспечивающих эффективное их теплоэнергетическое использование в течение расчетного срока.

Эксплуатационные запасы гидрогеотермальной энергии (термальных вод и тепла) — это часть прогнозных ресурсов, которые могут быть получены из оцениваемого водоносного комплекса рациональными в технико-экономическом и экологическом отношениях водозаборными сооружениями при заданном режиме их эксплуатации и соответствующем качестве теплоносителя (температура, химический и газовый состав), удовлетворяющем требованиям его целевого использования в течение всего расчетного срока эксплуатации. Эксплуатационные запасы выражаются в объемных расходах воды (в м3/сут), а запасы тепловой энергии — в ГДж, тоннах условного топлива (т у. т.).

Эксплуатационные запасы на месторождениях различного типа обеспечиваются естественными запасами и ресурсами, искусственными запасами и привлекаемыми ресурсами.

Естественные запасы следует рассматривать как массу подземных вод, заключенных в поровом пространстве продуктивных водоносных горизонтов внутри контура месторождения (участка), которая может быть высвобождена за счет гравитационных сил. Полная масса воды в поровом пространстве продуктивных горизонтов представляет собой геологические запасы. Геологические запасы включают и так называемые упругие запасы, высвобождающиеся из порового пространства при частичной или полной сработке пластового давления. В случае снижения уровня ниже кровли продуктивного комплекса может быть извлечена гравитационная масса воды, определяемая коэффициентом водоотдачи и объемом осушенных водовмещающих пород. Эта масса воды также является частью геологических запасов и называется емкостными запасами.

Естественные запасы, участвующие в формировании эксплуатационных запасов подземных вод, складываются из упругих и, в некоторых случаях, емкостных запасов.

Эксплуатационные запасы оцениваются по результатам комплекса геологоразведочных работ на конкретных месторождениях для удовлетворения потребностей в теплоносителе конкретных хозяйственных объектов.

Величина прогнозных ресурсов и эксплуатационных запасов гидрогеотермальной энергии зависит от применяемой технологии извлечения их из недр.

В настоящее время применяются традиционная технология, базирующая на преимущественном использовании пластовой энергии недр, и технология геоциркуляционных систем (ГЦС), базирующая на обратной закачке отработанного теплоносителя в эксплуатируемый водоносный горизонт. При геоциркуляционной технологии достигается восполнение ресурсов теплоносителя в недрах, поддержание пластового давления и, соответственно, интенсификация процесса извлечения тепловой энергии недр, а также решение проблемы экологически безопасного сброса использованных вод.

Традиционная технология реализуется при фонтанном или насосном способах эксплуатации скважин. При фонтанной эксплуатации производительность скважины ограничивается величиной избыточного устьевого давления, и при малых его значениях эксплуатация скважины, как правило, становится экономически не эффективной.

Создание дополнительного понижения уровня воды в скважинах с помощью погружных насосов позволяет существенно увеличить производительность скважин. Но при этом возникают дополнительные технические проблемы, связанные с созданием высокопроизводительных, высоконапорных насосов, способных работать в условиях высоких температур и коррозионно-агрессивных жидкостей.

Искусственные запасы возникают при разработке продуктивных горизонтов геоциркуляционными технологиями. Их следует понимать как дополнительное количество воды (полезных компонентов, тепла), которое может быть получено из продуктивного горизонта в сравнении с вариантом разработки без применения обратной закачки.

В таблицах 1 и 2 приведены классификация и распределение ресурсов геотермальной энергии по регионам России.

Привлекаемые ресурсы — это дополнительное питание (водное или тепловое) продуктивного горизонта в нарушенных эксплуатацией условиях. К привлекаемым ресурсам следует относить перетекание из смежных горизонтов, отжатие воды из глин, активизацию притока глубинной составляющей при снижении уровня, усиление инфильтрационного питания и др. Привлекаемые ресурсы тепла возникают вследствие охлаждения продуктивного горизонта и активизации теплопритока из окружающих пород или возрастания теплового потока за счет изменения градиента.

Валовой потенциал — средний годовой объем геотермальной энергии, содержащийся в исследуемом массиве горных пород в границах освоенной глубины бурения, при полном ее превращении в полезно используемую энергию.

Классификация ресурсов геотермальной энергии
Таблица 1. — Классификация ресурсов геотермальной энергии
Распределение ресурсов геотермальной энергии по регионам России
Таблица 2. — Распределение ресурсов геотермальной энергии по регионам России

Технический потенциал — часть валового потенциала, преобразование которого в полезно используемую энергию возможно при данном уровне развития технических средств, при соблюдении требований по охране окружающей среды.

Экономический потенциал — часть технического потенциала, преобразование которого в полезно используемую энергию экономически целесообразно при данном уровне цен на ископаемое топливо, тепловую и электрическую энергию, оборудование, материалы и транспортные услуги, оплату труда и др.

При эксплуатации термальных вод по традиционной технологии из недр извлекается: при фонтанной эксплуатации — (2–10) · 102 %, при насосной — (7–56) · 10−2 % запасов термальных вод. При геоциркуляционной технологии этот показатель достигает 20–30%, т. е. на много порядков выше. Коэффициент извлечения тепла из недр составляет (3–17) · 10−3 % при фонтанной эксплуатации, (1–8) · 10−2 % — при насосной, увеличиваясь до 5–13% при применении геоциркуляционной технологии. Соответственно во много раз возрастают и прогнозные ресурсы термальных вод.

Методика оценки геотермальных ресурсов

Общие потенциальные геотермальные ресурсы. Они характеризуют тепловой потенциал толщи пород на прогнозируемую глубину бурения до 10 км. Оцениваются исходя из предпосылки, что массив горных пород можно охладить до температуры окружающей среды, хотя практически вряд ли это возможно. Плотность распределения ресурсов определяется по следующей формуле:

Qо = kCV (Hпр − hнс) (tиз − tос),

где Qо — плотность распределения ресурсов, т у. т./м2; k — коэффициент перехода от тепловой энергии к условному топливу, т у. т./Дж; CV — объемная теплоемкость пород, Дж/(м3 · C); Hпр — прогнозируемая глубина бурения, м; hнс — мощность нейтрального слоя, м; tиз — средняя температура массива, C; tиз = 0,5(tпр + tнс); tпр — температура пород на прогнозируемой глубине, C; tнс — температура нейтрального слоя, C; tос — температура окружающей среды, C.

Технически доступные геотермальные ресурсы рассчитываются в двух режимах, определяемых потребителем: режим 70/20 C — для горячего водоснабжения (ГВС) и 90/40 C — для отопления.

В режиме 70/20 C плотность ресурсов геотермальной энергии определяется следующим выражением:

Qт = kξCV (Hн − Hв) (t’из− 20),

где Qт — плотность ресурсов, т у. т./м2; ξ — коэффициент температурного извлечения (ξ = 0,125); Hн — нижняя граница ресурсного интервала, м (Hн = 6000 м); Hв — верхняя граница ресурсного интервала, м; Hв = [(tв − tнс)/Г] + hнс; t’из = 0,5(tв + tн); tв— температура на верхней границе ресурсного интервала, C (в этом режиме для получения теплоносителя с температурой не менее 70 C средняя температура массива t’из с учетом потерь при транспортировке должна быть не менее 80C); tн — температура на нижней границе массива ресурсного интервала, C; tн=Г(Hн − hнс)+tнс. Исходя из положения t’из  ≥ 80 C: tв = 2t’из− tн, тогда минимальное значение tв = 160 − tн. При высоких значениях tн вводится ограничение tв  ≥ 30 C.

Плотность ресурсов геотермальной энергии в режиме 90/40C определяется по формуле:

Qт = kξCV (Hн − Hв) (t’из − 40).

Для обеспечения температуры теплоносителя, равной 90 C, средняя температура массива должна быть не менее 100 C, а заданная температура на верхней границе ресурсного интервала — не менее 50 C.

Экономически эффективные геотермальные ресурсы складываются из двух составляющих: QЭ(1) — теплосодержания рабочего горизонта со средней температурой пород, близкой к потребностям заказчика при условии равных или меньших приведенных затрат на добычу теплоты недр по сравнению с затратами на другие сопоставимые источники энергии; QЭ(2) — теплосодержания нижележащих пород до ограниченной глубины, определяемой из условия равенства затрат на добычу геотермальной энергии и затрат на другие сопоставимые источники энергии.

Методика оценки гидрогеотермальных ресурсов

Оценка гидрогеотермальных ресурсов заключается в определении производительности водозаборного сооружения при заданном понижении уровня воды в скважинах или, наоборот, в прогнозе понижения уровня воды при заданной производительности водозаборного сооружения. Одновременно должно соблюдаться условие, что при расчетном водоотборе качество термальных вод будет удовлетворять необходимым кондициям в течение всего срока эксплуатации водозабора.

Ресурсы термальных (теплоэнергетических) вод подсчитываются как по месторождениям или эксплуатационным участкам с целью обоснования строительства водозаборных сооружений для теплоснабжения конкретных объектов, так и в пределах крупных гидрогеологических регионов для обоснования перспективных генеральных схем использования этих вод на различные нужды народного хозяйства, а также направлений и объемов поисково-разведочных работ.

На месторождениях (участках) оценка выполняется по результатам специальных разведочных работ или по данным эксплуатации действующих водозаборных сооружений.

Расчет прогнозных ресурсов термальных вод выполняется на основе региональных оценок, которые целесообразно осуществлять в пределах отдельных гидрогеологических структур по основным перспективным водоносным комплексам (горизонтам) с последующим их разделением при необходимости на экономические или административные единицы.

Оценка выполняется на основе гидрогеотермического районирования территории с выявлением зон, каждая из которых характеризуется сочетанием усредненных значений основных гидрогеологических и гидрогеотермических параметров, определяющих в комплексе размеры ресурсов и теплоэнергетический потенциал термальных вод, а также геолого-экономические показатели их промышленного освоения.

По результатам оценки ресурсов производится геолого-экономическое районирование перспективных территорий по комплексу показателей, определяющих возможные масштабы, экономический эффект, последовательность изучения и промышленного освоения гидрогеотермальных ресурсов. Региональная оценка прогнозных ресурсов должна не только выявить, сколько термальной воды можно получить в данном перспективном районе и каков ее теплоэнергетический потенциал, но и ответить на вопросы эффективного промышленного освоения ресурсов (методы разработки водоносных горизонтов, способы эксплуатации скважин и их взаимное расположение, возможные схемы энергетических систем и т. д.).

Оценка эксплуатационных запасов термальных вод и их теплоэнергетического потенциала проводится на основании утвержденных кондиций. Кондиции представляют собой совокупность экономически и технологически обоснованных требований к качеству и количеству воды, техническим условиям эксплуатации месторождения при рациональном использовании недр и соблюдении правил охраны окружающей среды.

Кондиции должны учитываться при составлении проектов разработки и обустройства месторождений термальных вод. Для разработки технико-экономических обоснований (ТЭО) кондиций должны привлекаться специализированные проектные или проектно-исследовательские организации.

Основные показатели кондиций, обосновываемые в ТЭО:

  • минимальная температура воды (или энтальпия пароводяной смеси) на устье скважины;
  • максимально допустимая минерализация и предельное содержание отдельных компонентов или их групп, включая содержание не конденсирующихся газов в парогидротермах (двуокиси углерода, сероводорода, метана, аммиака, азота, водорода, этана);
  • минимальные избыточные давления воды или пара на устьях эксплуатационных скважин и максимальные давления на устьях нагнетательных скважин;
  • предельные глубины и дебиты эксплуатационных скважин.

Кроме того, в проекте кондиций должны быть обоснованы способы и средства водоподъема, система транспортировки воды до потребителя, согласованный с заказчиком расчетный срок эксплуатации водозабора и режим водоотбора в пределах этого срока, способы удаления использованных вод.

В каждом конкретном случае эксплуатационные запасы оцениваются с учетом заявленной потребности в теплоносителе и наличия действующих водозаборных сооружений с целью установления возможного взаимного влияния проектируемого и действующих водозаборных сооружений и обоснования ожидаемого прироста запасов.

Расчет водозабора включает обоснование рациональной схемы размещения эксплуатационных и нагнетательных (в случае применения ГЦС-технологии) скважин, режима их эксплуатации.

В случаях неравномерного водопотребления в течение года оценка эксплуатационных запасов теплоносителя проводится в двух вариантах: при непрерывном равномерном и заданном неравномерном режимах водопотребления. Ограничивающими показателями являются величины допустимых понижений уровня в эксплуатационных скважинах, а также допустимые с технико-экономических позиций величины давления нагнетания (в случае применения ГЦС-технологии).

При оценке эксплуатационных запасов весьма важно определить срок разработки месторождения, в течение которого количество и качество подземных вод должно соответствовать техническим условиям, а ожидаемые величины снижения давления или уровня в скважинах не превысят допустимых.

При оценке эксплуатационных запасов месторождений теплоэнергетических вод используют в основном гидродинамический и гидравлический методы.

Гидродинамический метод базируется на достаточно строгих гидродинамических и теплофизических решениях и применяется для пластовых систем и приуроченных к ним месторождений. Метод основан на прогнозных расчетах изменения дебитов и уровней с учетом параметров водоносных пород, определяемых по данным гидрогеологических работ в период разведки месторождений.

При добыче глубоких подземных вод проявляются упругие свойства вод и пород, что приводит к длительному неустановившемуся притоку подземных вод к скважинам. Интенсивность и характер изменения уровней и дебитов зависит от ряда факторов:

  • водопроводимости и пьезопроводимости и их изменения по площади эксплуатационного участка и за его пределами в зоне влияния водозабора;
  • граничных условий месторождения и эксплуатационного участка, определяемых наличием областей создания напора, выклиниванием или резким изменением мощности или литолого-фациальных свойств водовмещающих пород;
  • суммарного дебита водозабора и дебитов отдельных скважин и их изменения в процессе эксплуатации.

Водопроводимость грунтов и пород T, м2/сут или м2/с, — это произведение коэффициента фильтрации k на мощность m водоносного пласта:

T = km.

Водопроводимость характеризует единичный (на единицу ширины потока) фильтрационный расход по простиранию водоносного пласта при градиенте напора, равном единице.

Пьезопроводность водоносных пластов представляет собой отношение водопроводимости T к водоотдаче μ:

a = T/μ

В напорных пластах вместо гравитационной водоотдачи μ принимается упругая водоотдача μ.

Пьезопроводность является показателем скорости перераспределения напора и сработки запасов водоносного пласта в условиях неустановившейся фильтрации. Для стационарных потоков, в которых не происходит изменения напоров и сработки запасов во времени, а также при жестком режиме фильтрации, когда не рассматриваются упругие деформации воды и фильтрующей породы, пьезопроводность исключается.

Коэффициент гравитационной водоотдачи μ представляет собой отношение объема воды к объему осушенной части пород, а коэффициент упругой водоотдачи μ∗ можно рассматривать как отношение объема извлекаемой из пласта воды к объему воронки депрессии, образующейся в пьезометрической поверхности пласта.

Основной расчетной формулой при подсчете эксплуатационных запасов для скважины с постоянным дебитом является:

формула

На практике обычно используют логарифмическое приближение, которое с точностью до 5% может заменить (3 формула)  при соблюдении условия

формула

При этом формула для определения понижения уровня в скважине примет вид:

формула

что соответствует квазиустановившемуся характеру движения подземных вод к скважинам, когда темп снижения давления во всех точках внутри зоны фильтрации становится одинаковым. В этой зоне кривые понижения давления (уровня) во времени перемешаются параллельно друг другу.

При подсчете запасов водозаборные сооружения задаются либо как группа взаимодействующих скважин, произвольно размещенных на местности, либо в виде упорядоченных систем — линейной, площадной, кольцевой и др.

Расчетный срок эксплуатации скважин в соответствии с установившейся практикой оценки запасов подземных вод рекомендуется принимать равным 10000 суток (около 27 лет).

Эксплуатационные запасы считаются обоснованными тогда, когда их количество и качество соответствует кондициям и прогнозное снижение уровня термальных вод в скважинах к концу расчетного срока эксплуатации не превышает допустимой величины.

Оценка эксплуатационных запасов термальных вод и парогидротерм с применением ГЦС-технологии эксплуатации месторождений так же, как и при традиционных фонтанном и насосном способах эксплуатации, выполняется гидродинамическим методом. При этом должны решаться следующие задачи:

  • гидродинамический прогноз изменения пластового давления, избыточного давления на устье эксплуатационных скважин и давления на устье нагнетательных скважин;
  • прогноз изменения температуры теплоносителя в пластовых условиях и эксплуатационных скважинах к концу расчетного срока эксплуатации;
  • прогноз приемистости нагнетательных скважин;
  • определение теплофизических параметров теплоносителя, водовмещающих пород, ограничивающих водоупоров, а также активной пористости;
  • прогноз возможных изменений фильтрационных параметров в призабойных зонах нагнетательных скважин и продуктивном пласте за счет процессов физико-химического взаимодействия закачиваемых вод с пластовыми водами и водовмещающими породами.

В результате рассмотрения этих задач необходимо решить оптимизационную задачу по сохранению первоначальной температуры теплоносителя в призабойных зонах эксплуатационных скважин к концу срока эксплуатации или понижению указанной температуры на заранее заданную величину.

Гидравлический метод основан на изучении связи дебита с понижением динамического уровня при установившемся притоке подземных вод к одиночным и взаимодействующим скважинам. Оценка эксплуатационных запасов в этом случае производится путем гидравлических расчетов на основе экстраполяции полученных опытных данных. Этот метод широко применяется при оценке эксплуатационных запасов в сложных гидрогеологических условиях, не поддающихся простейшей схематизации для обоснованных гидродинамических расчетов. Этот метод является основным при оценке запасов минеральных и термальных вод в горноскладчатых областях и в районах сложного геологотектонического строения. Опытно-эксплуатационные откачки обычно проводятся при высоких дебитах, близких к проектным, для выявления характера изменения понижения уровня во времени и последующего прогноза понижений на расчетный срок работы водозаборных сооружений.

Комбинированный метод основан на совместном использовании гидродинамического и гидравлического методов. В таких случаях гидравлическим методом определяется понижение уровня при проектном дебите скважин и с учетом их взаимодействия на период времени опытных работ. Дополнительное понижение уровня на конец расчетного периода эксплуатации скважин определяется гидродинамическим методом.

Балансовый метод основан на анализе приходных и расходных статей баланса подземных вод. Для глубоких термальных вод платформенных областей, характеризующихся весьма малыми скоростями фильтрации, часто полным отсутствием проявлений на поверхности и широким региональным распространением, оценка запасов этим методом неприемлема. Однако для минеральных, термальных вод горноскладчатых областей и парогидротерм областей современного вулканизма балансовые расчеты имеют важное значение с точки зрения оценки общих ресурсов таких вод.

Теплоэнергетический потенциал ресурсов термальных вод

Теплоэнергетический потенциал ресурсов термальных вод, возможные масштабы и технико-экономические показатели их практического использования, а также их возможный вклад в топливно-энергетический баланс отдельных экономических районов и страны в целом в значительной мере определяются обоснованностью принимаемого в расчетах полезно используемого перепада температуры вод tисп:

tисп = tс − tк,

где tс — усредненная за расчетный период разработки температура термальных вод, C; tк — конечная температура воды после использования, C.

Определение конечной температуры вызывает в большинстве случаев значительные трудности. В расчетах условного теплоэнергетического потенциала ресурсов термальных вод рекомендуется принимать единое значение tк = 30–35 C, рассчитанное на максимальное использование тепла. При этом подчеркивается, что объемы эксплуатационных ресурсов и теплоэнергетический потенциал термальных вод при разработке водоносных горизонтов с поддержанием пластового давления в значительной степени будут зависеть от заданного уровня охлаждения пласта на конец расчетного периода. Этот показатель должен определяться из условия сохранения первоначальной пластовой температуры вблизи забоев эксплуатационных скважин в течение всего расчетного срока при температуре нагнетаемой воды 30–35C.

Конечная температура зависит от начальной температуры воды, вида ее практического использования, применяемых схем теплоснабжения или выработки электроэнергии, а также конструкций теплоэнергетического оборудования.

В технологических системах со сбросом отработанной воды на поверхность необходимо добиваться максимального использования температурного потенциала с доведением конечной температуры до 5 C и даже еще ниже, так как неиспользованное низкопотенциальное тепло в таких системах считается безвозвратно утерянным. На сегодня имеются перспективные системы теплоснабжения с тепловыми насосами, которые позволяют добиваться такого результата.

В системах с ГЦС-технологиями для каждого конкретного случая с учетом геолого-геотермических условий и физико-химических процессов, протекающих при эксплуатации систем, необходимо решать оптимизационную задачу. С одной стороны, максимально возможное снижение температуры закачиваемой воды приводит к значительному дополнительному съему тепла с циркулирующей термальной воды, а также увеличению плотности закачиваемой воды за счет дополнительного охлаждения воды и, естественно, к увеличению гидростатического давления в нагнетательной скважине (эффект термопресса).

С другой стороны, снижение температуры закачиваемой воды приводит к увеличению ее вязкости и, соответственно, к увеличению фильтрационных сопротивлений в эксплуатируемом пласте, что может привести к потерям давления в пласте, превалирующим над эффектом термолифта. Кроме того, при снижении температуры воды усиливаются процессы солеотложений, что также создает дополнительные проблемы при эксплуатации системы. Оптимизацию необходимо производить с учетом перечисленных противоположных факторов.

Из анализа сказанного можно заключить следующее: конечной температурой использованной термальной воды нужно считать такую температуру, ниже которой не существует экономически эффективных способов ее использования в данных территориально-климатических условиях.

Теплоэнергетический потенциал геотермальной скважины определяется по формуле:

формула

Категории эксплуатационных запасов

Оценка эксплуатационных запасов термальных вод осуществляется на всех стадиях изысканий. Достоверность запасов отражается в их категоризации. Согласно «Классификации эксплуатационных запасов и прогнозных ресурсов подземных вод» эксплуатационные запасы подразделяются на освоенные (категория A), разведанные (категория B), предварительно оцененные (категория C1), выявленные (категория C2) и прогнозные ресурсы (категория P).

Запасы категории A оцениваются на основе анализа данных эксплуатации на разрабатываемых месторождениях и являются основой для проектирования расширения водозабора.

Запасы категории B подсчитываются на разведанных месторождениях и являются основанием для проектирования водозабора и эксплуатации подземных вод.

Запасы категории C1 подсчитываются на предварительно оцененных месторождениях по результатам поисково-оценочных работ и предназначены для обоснования целесообразности разведки месторождения и использования подземных вод, а также составления проекта разведочных работ.

Запасы категории C2 подсчитываются на выявленных месторождениях по результатам спец иальных поисковых работ и предназначены для оценки и учета потенциальных возможностей месторождений, а также для обоснования целесообразности постановки на них поисково-оценочных работ.

Прогнозные ресурсы категории P оцениваются по результатам региональных гидрогеологических исследований и являются основой для постановки поисковых или поисково-оценочных работ на площадях, перспективных для выявления новых месторождений подземных вод.

Запасы категории B подсчитываются применительно к согласованным проектным схемам и конструкциям водозабора, заданной потребности и графику отбора теплоносителя с учетом заданного допустимого влияния на окружающую природную среду; запасы категории C1 — применительно к условно принятой схеме водозабора и заявленной потребности теплопотребителей; C2 — применительно к условным обобщенным схемам эксплуатации. При оценке прогнозных ресурсов геолого-экономические аспекты обоснования системы размещения и схемы водозаборных сооружений специально не рассматриваются и устанавливаются на основании принципиальных оценок возможностей практического использования теплоносителей.

Аналогичные требования предъявляются и при оценке теплоэнергетического потенциала запасов. Так, оценка потенциала запасов категории В выполняется применительно к проектным вариантам видов и технологий использования теплоносителей. Оценка потенциала запасов категорий C1 и C2 выполняется применительно к проработанным или намеченным видам и технологиям их теплоэнергетического использования. Оценка прогнозных ресурсов сопровождается, как правило, определением общего теплоэнергетического потенциала термальных вод.

Факторы, влияющие на дебит геотермальной скважины

Для глубоких скважин, вскрывающих водоносные горизонты с относительно высокими температурами в пласте, понижение уровня подземных вод в пласте S в (формуле 3) не равно понижению уровня на устье скважины Sу. Это обусловлено проявлением эффектов термолифта и газлифта, а также гидравлических потерь напора в водоподъемных трубах эксплуатационной скважины. Зависимость между S и Sу имеет следующий вид:

S = Sу − hтр + Sт + Sг,

где hтр — гидравлические потери напора на трение, м; Sт, Sг — поправки к уровню, учитывающие термолифт и газлифт, м.

Потери напора на преодоление гидравлических сопротивлений в водоподъемных трубах при движении воды от пласта до устья скважин делятся на две группы:

  • потери напора по длине потока, затрачиваемые на преодоление сопротивления трения;
  • местные потери напора, вызываемые резким изменением конфигурации границ потока.

В силу этого понижение уровня на устье будет больше, чем понижение уровня в пласте на величину общих потерь. Из общих потерь линейные потери напора на трение составляют около 70 %, а остальные 30% приходятся на местные сопротивления.

Потери напора и распределение скоростей по сечению потока существенно различны для ламинарного и турбулентного режима течения жидкости. Критерием, определяющим режим движения потока, служит  безразмерное число Рейнолдса (Re):

формула

Критическое значение числа Рейнолдса можно считать равным 2300.

Потери напора по длине как при ламинарном, так и при турбулентном течении в трубах круглого сечения определяются по формуле Дарси–Вейсбаха:

формула

При ламинарном течении коэффициент λ в  формуле Дарси–Вейсбаха определяется по формуле Пуазейля:

λ = 64/Re

При турбулентном течении коэффициент λ определяется по формуле А. Д. Альтшуля:

формула

Потери напора резко возрастают с увеличением скорости течения, т. е. с увеличением дебита скважины и уменьшением диаметра водоподъемных труб, и могут достигать больших величин. В таблице 3 приведены потери напора h на 1000 м длины водоподъемных труб в зависимости от диаметра скважины и ее дебита.

Потери напора h в трубах разного диаметра, м/1000 м
Таблица 3. — Потери напора h в трубах разного диаметра, м/1000 м

Дебит скважины и скорость течения связаны соотношением

формула

В большинстве случаев в термальных водах в том или ином количестве содержатся растворенные газы. Среди растворенных газов преобладают азот N2, углекислый газ CO2 и метан CH4.

Объем газа (измеренный в стандартных условиях — при атмосферном давлении и температуре 20 C), растворенного в единице объема воды, называют газосодержанием воды или газовым фактором.

Растворимость газов в воде зависит от давления, температуры, химического состава воды и газа.

Важным параметром растворенных газов является давление насыщения, или упругость. Давлением насыщения называется то минимальное давление, при котором весь газ еще находится в растворенном состоянии. Если давление воды больше давления насыщения, то весь газ находится в растворенном состоянии, если давление упало ниже давления насыщения, то из воды выделяется часть газа.

При движении пластовой воды от забоя к устью скважины на определенной глубине, где давление становится равным давлению насыщения, газ начинает выделяться из воды. По мере дальнейшего подъема воды к устью скважины количество выделившегося из нее газа увеличивается, достигая максимальной величины, равной газовому фактору, при атмосферном давлении на поверхности.

Дополнительное приращение напора за счет проявляющегося эффекта газлифта можно определить по формуле:

формула

Эффект газлифта проявляется максимальным образом при P1 = P0.

В таблице 4 приведены результаты расчетов величины Sг в зависимости от C0, P1 и Pг для условий ρ = 1050 кг/м3 и tу = 100 C. Из табличных данных видно, что при высоких значениях газового фактора значения Sг достигают до 100 и более метров. Такое дополнительное приращение напора позволит существенно увеличить эксплуатационный дебит самоизливающейся скважины, а также скважину, статический уровень в которой ниже поверхности земли, после кратковременной насосной эксплуатации, перевести на режим самоизлива.

В глубоких термальных скважинах при определении их дебитов необходимо также учитывать изменение плотности воды в зависимости от изменения температуры.

Расчетные значения Sг по формуле дополнительного приращение напора за счет проявляющегося эффекта газлифта
Таблица 4. — Расчетные значения Sг по формуле дополнительного приращение напора за счет проявляющегося эффекта газлифта

Поправка к уровню, учитывающая термолифт, определяется по следующей формуле:

формула

Когда скважина находится в покое, разница в температуре воды в пласте и у устья скважины (или у статического уровня не фонтанирующей скважины) будет максимальной. В длительно простаивающей скважине температура по ее стволу распределяется в соответствии с температурным градиентом для данного района (за исключением зоны выше нейтрального слоя).

Средняя температура в стволе простаивающей скважины определяется по формуле:

tст = (tпл + tнс)/2,

где tпл — пластовая температура термальной воды, C; tнс — температура нейтрального слоя, C.

В простаивающей скважине, где статический уровень воды находится ниже нейтрального слоя, средняя температура определяется из следующего выражения:

tст = (tпл + tсу)/2,

где tсу — температура термальной воды у статического уровня, C,

tсу = tнс + Г (hсу − hнс).

Здесь Г — геотермический градиент,C/м; hсу — глубина статического уровня от устья, м; hнс — глубина нейтрального слоя.

Средняя температура в эксплуатируемой скважине определяется по формуле:

tд = (tпл + tу)/2,

где tу — устьевая температура термальной воды в эксплуатируемой скважине.

При пуске скважины в эксплуатацию по мере прогревания окружающих горных пород в скважине устанавливается новый температурный режим, зависящий главным образом от дебита скважины. Потери тепла в стволе скважины зависят от ее глубины, диаметра и дебита.

Из практики эксплуатации геотермальных скважин следует, что при дебитах более 500 м3/сут эти потери не превышают 10 %. В этих условиях для оценочных расчетов можно принять tу = 0,9 tпл.

В таблице 5 приведены значения приращения напора Sт за счет эффекта термолифта, проявляющегося при эксплуатации скважины.

Расчеты проведены при tнс = 15 C и Г = 0,035 C/м. Пластовая температура tпл определяется по формуле (TH = T0 +ΓH,), а значения плотности воды, соответствующие средним значениям температуры в стволе скважины при ее простаивании и эксплуатации, берутся из справочных табличных данных физических свойств воды.

Расчетные значения Sт по формуле поправка к уровню, учитывающая термолифт
Таблица 5. — Расчетные значения Sт по формуле поправка к уровню, учитывающая термолифт

Из расчетных значений следует, что с увеличением глубины значения Sт  увеличиваются и для глубоких скважин могут достигать 50 м и более.