Гелиоэнергетика

Солнечные электростанции

Солнечные электростанции с центральным приемником

Солнечные электростанции (СЭС) с термодинамическим циклом преобразования используют концентрированное солнечное излучение для нагрева промежуточного теплоносителя или непосредственно рабочего тела теплосиловой установки. В качестве концентраторов преимущественно используются зеркальные системы в виде:

  • поля отдельных плоских гелиостатов, следящих за Солнцем и фокусирующих прямую солнечную радиацию на гелиоприемник, установленный наверху высокой башни (башенные СЭС);
  • параболоцилиндров, следящих за Солнцем по одной координате, в фокусе которых установлена приемная труба, по которой протекает нагреваемая жидкость. Для уменьшения тепловых потерь и достижения высоких температур подогрева труба заключена в вакуумированную прозрачную оболочку;
  • параболоидов, в фокусе которых находится тепловоспринимающая поверхность двигателя Стирлинга, газотурбинной установки либо нагревателя рабочего тела паротурбинной установки.

Из названных схем наибольшее распространение получили СЭС с параболоцилиндрическими концентраторами. В 1980-х—начале 1990-х гг. в Калифорнии (США) было сооружено 9 СЭС этого типа с суммарной мощностью 354 МВт. Часть из них работает и до сих пор. В качестве теплоносителя, нагреваемого в концентраторе до температуры 380C, используется высокотемпературное минеральное масло, отдающее тепло водяному пару — рабочему телу паротурбинной установки. Предусмотрено дополнительное сжигание (до 20% в год по теплу) природного газа. В последнее время в различных странах (Египет, Индия, Марокко, Мексика) обсуждаются проекты создания подобных СЭС, однако окончательных решений по этому поводу не принято.

Примерно в это же время в разных странах (в том числе в СССР) были сооружены СЭС башенного типа мощностью от 1 до 10 МВт. Наиболее известна СЭС Solar One мощностью 10 МВт, сооруженная в США и впоследствии реконструированная в Solar Two с той же мощностью. Solar Two проработала несколько лет и после проведения запланированного цикла исследований была остановлена из за неконкурентоспособности.

Особенностью этих СЭС является работа только за счет солнечной энергии, без использования обычных топлив. С этой целью схема СЭС включает тепловой аккумулятор, использующий расплавленную соль, и позволяющий несколько продлить работу СЭС за пределы светового дня. Ряд СЭС подобного рода планируется создать в Испании, где действует благоприятное для солнечных установок законодательство (премия 0,12 €/кВтч сверх базовой цены за электроэнергию). В ЮАР в стадии рассмотрения находится проект башенной СЭС мощностью 100 МВт.

В восьмидесятые годы прошлого столетия в Крыму была построена первая экспериментальная солнечная электростанция (СЭС-5) мощностью 5 МВт с термодинамическим циклом преобразования энергии (рисунок 1).

Поле зеркал Крымской солнечной электростанции
Рисунок 1. — Поле зеркал Крымской солнечной электростанции

Парогенератор СЭС-5 установлен на вершине башни высотой 70 м, расположенной в центре кругового поля гелиостатов, которые концентрируют и направляют солнечную радиацию на его поверхности нагрева. Они размещены по всему открытому снаружи периметру. Парогенератор выполнен в виде 16-гранника с диаметром описанной окружности 7176 мм и высотой обогреваемой части 7000 мм. Его поверхность нагрева образована вертикально-трубными цельносварными панелями, расположенными по граням его наружного периметра. Гелиостаты в количестве 1600 штук концентрическими кругами расположены на площадке радиусом более полукилометра. Каждый гелиостат оснащен специальным устройством для поворота зеркала площадью 25 м2. Зеркала должны двигаться непрерывно вслед за солнцем, чтобы при любом положении солнца на небе ни одно из них не оказалось в тени, а отбрасываемый каждым из них солнечный зайчик попал бы точно в вершину башни, где расположен паровой котел. Солнечный парогенератор предназначен для получения 7,8 кг/с насыщенного пара давлением 4 МПа. Пар высокого давления температурой 250 C приводит во вращение турбину, та — электрогенератор. Опыт эксплуатации СЭС-5 показал, что ее характеристики ниже зарубежных аналогов и выявил серьезные ошибки в проектировании.

Зарубежный опыт создания СЭС показывает, что в перспективе такие станции станут конкурентоспособными с обычными источниками электроэнергии.

Мощность СЭС с параболическими концентраторами лимитируется размерами параболоида. Наибольший параболоид, сооруженный в Австралии, имеет площадь апертуры в 400 м2, и с двигателем Стирлинга при КПД около 20% мог бы развивать мощность до 60 кВт. Все другие СЭС с параболоидами создавались как опытные на мощность 10–25 кВт.

Солнечные фотоэлектрические преобразователи

Впервые на связь электричества и света указал Максвелл. В дальнейшем эта связь была доказана профессором МГУ А. Г. Столетовым, в экспериментальной установке которого (1888 г.) потек электрический ток, рожденный световыми лучами. В 1954 г. Пирсон, Чепмен и Фуллер осветили лучами две различные кремниевые пластины, соединенные вместе наподобие бутерброда. Образовалась электрическая цепь, в которой в результате внутреннего фотоэффекта возник ток.

Прямое преобразование солнечной радиации в электроэнергию осуществляется полупроводниковыми фотоэлектрическими преобразователями (ФЭП). Российские ученые являются признанными лидерами в сфере конструирования материалов для полупроводниковых элементов. Исследователям во главе с нобелевским лауреатом академиком Ж. Алферовым удалось создать совершенно новые структуры полупроводниковых материалов для фотоэлементов.

В настоящее время наибольшее распространение получили ФЭП на основе кремния, легированного элементами III и V групп для получения так называемого p–n-перехода. Применяются ФЭП из монокристаллического, поликристаллического и аморфного кремния. Основой ФЭП являются солнечные элементы, имеющие форму круга диаметром до 100 мм или многогранника. Элементы собираются в модули, имеющие при стандартной инсоляции мощность до 100 Вт (рисунок  2). Из таких модулей набираются батареи в ряде случаев мощностью до нескольких МВт.

Модули ФЭП фирмы "Муссон"

Преимуществом ФЭП является то, что он использует как прямое, так и рассеянное излучение, не требует слежения за Солнцем и практически не нуждается в обслуживании. Лучшие серийно производимые модули из монокристаллического кремния имеют КПД около 18% и стоимость 3,5–4 $/Вт.

По данным МЭА в 20 индустриально развитых странах суммарная установленная мощность ФЭП к концу 2003 г. составила 1,8 ГВт, причем только за 2003 г. она возросла на 0,43 ГВт .

В 2005 г. в мире было произведено ФЭП суммарной мощностью 1,727 ГВт, а к концу 2010 г. предполагается увеличение производства в 3,5 раза.

Несмотря на высокие темпы наращивания установленной мощности ФЭП как в развитых, так и в развивающихся странах, за счет высокой стоимости материалов и технологии изготовления, стоимость электроэнергии от ФЭП все еще высока — в благоприятных условиях около 0,20 цент./(кВт · ч).

Некоторую перспективу удешевления электроэнергии связывают с работой ФЭП на концентрированном солнечном излучении. При этом уменьшается удельная стоимость собственно ФЭП, но добавляется стоимость концентрирующего устройства. В этом случае оказывается целесообразным применять вместо кремния более дорогие материалы и структуры, обеспечивающие более высокий КПД. Однако такие системы пока не нашли распространения.

На юго-востоке Испании в Caravaca de la Cruz ведутся работы по созданию 5-мегаваттной СЭС (рисунок 3). Новое солнечное предприятие объединит 500 установок по 10 кВт каждая, с общей поверхностью солнечных панелей около 350 тыс. м2. Благодаря применению двуосной системы слежения за Солнцем, индивидуальные фотоэлектрические системы будут постоянно повернуты к светилу, что позволит максимально использовать его энергию от рассвета до заката. Согласно предварительным расчетам, применение следящей системы в сравнении с неподвижными модулями позволит повысить выработку электроэнергии на 40–45 %. Это увеличит производство электроэнергии примерно на 2000 кВт · ч/год с каждого киловатта установленной мощности СЭС, что даст ежегодную прибавку в выработке электроэнергии до 10 ГВт · ч.

Батареи ФЭП
Рисунок 3. — Батареи ФЭП

Создание нового фотоэлектрического предприятия происходит на фоне принятого в Испании плана развития возобновляемой энергетики, в котором правительство поставило цель установить 400 МВт фотоэлектрических солнечных систем к 2010 г.

В Германии, возле города Prenzlau, введено в действие крупнейшее из созданных когда-либо предприятий для производства солнечных панелей. Оно построено неподалеку от уже действующего аналогичного предприятия Aleo/SMO. Его производственная мощность составляет 90 МВт, что соответствует примерно 550 тыс. модулей в год. Это количество ежегодно производимых фотоэлементов обеспечит электроэнергией около 45 тыс. человек.

Создание предприятия явилось ответом не только на быстрый рост внутреннего рынка фотоэлектрических технологий Германии, но также на стремительный рост мирового рынка этих технологий.

Сегодня в России имеются достаточная научная база для развития фотоэнергетики и мощное производство, которое способно создавать любые современные солнечные фотоэлектрические установки.

Экономический потенциал солнечной энергии в России сравнительно невелик, из чего следует, что сооружение СЭС с термодинамическим циклом вряд ли целесообразно. Вместе с тем условия для создания солнечных водонагревательных установок (СВУ) для горячего водоснабжения существуют практически повсеместно, особенно в теплое полугодие. Солнечное отопление с помощью систем подогрева теплоносителя в СК для России экономически нецелесообразно. Малая плотность потока солнечной радиации, поступающей в холодное время года, потребовала бы непомерно больших размеров СК в расчете на единицу отапливаемой площади. Однако представляет интерес пассивное использование солнечного тепла за счет разумной архитектуры зданий.

Наряду с СВУ солнечную энергию целесообразно использовать для производства электроэнергии с помощью ФЭП в установках небольшой мощности (в системах связи, сигнализации, навигации, для бытовых нужд в труднодоступных районах и др.).

Особый интерес представляют автономные системы электроснабжения малой мощности (до 6 кВт), которые могут использоваться на небольших предприятиях, фермерских хозяйствах, в индивидуальных жилых домах с использованием солнечной и ветровой энергий (рисунок 4).

Автономная система электрснабжения на базе ветрогенератора и фотоэлектрического преобразователя

Недостатком такого электропитания является несогласованность величины и времени поступления электроэнергии от источника к потребителю. Так, при отсутствии Солнца перестает работать солнечная батарея и потребитель обесточивается. То же самое происходит с ветроэнергетической установкой, если скорость ветра ниже 3 м/с.

Добавив к системе электропитания аккумулятор, можно избавиться от указанных недостатков. Избыток электроэнергии, вырабатываемой различными источниками, может запасаться аккумуляторной батареей (АБ). Инвертор преобразует постоянное напряжение 24 В в переменное напряжение 220 В. К выходу инвертора подключаются потребители электроэнергии.

В заключение отметим, что высокая стоимость электроэнергии от ФЭП сдерживает их более широкое применение. Эта высокая стоимость обусловлена дороговизной кремния высокой чистоты и технологического процесса. В мире и в России ведутся интенсивные исследования и разработки, направленные на удешевление ФЭП.