Гелиоэнергетика

Солнечные тепловые электростанции

Солнце – значительный источник энергии на планете Земля. Солнечная энергетика очень часто становится предметом самых разнообразных дискуссий. Как только появляется проект новой солнечной электростанции, возникают вопросы об эффективности, мощности, объемах инвестированных средств и сроках окупаемости. Есть ученые, которые видят в солнечных тепловых электростанциях угрозу для окружающей среды. Использующиеся в тепловых солнечных электростанциях зеркала очень сильно нагревают воздух, что приводит к изменению климата и к смерти птиц, пролетающих мимо. Несмотря на это, в последние годы солнечные тепловые электростанции получают все большее распространение. В 1984 году вступила в строй первая солнечная электростанция около калифорнийского города Крамер Джанкшен в пустыне Мохабе (рис. 6.1). Станция получила название Solar Energy Generating System, или сокращенно SEGS.

Солнечная электростанция в пустыне Мохабе
Рис. 6.1. Солнечная электростанция в пустыне Мохабе

На данной электростанции солнечную радиацию используют для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. В настоящее время энергокомпаниями США уже построены солнечные тепловые электростанции общей установленной мощностью более 400 МВт, которые обеспечивают электричеством 350 000 человек и замещают 2,3 млн баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохабе, имеют 354 МВт установленной мощности. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы. Гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.

По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы (зеркала) и солнечные пруды.

Солнечные концентраторы

Тепловые солнечные электростанции концентрируют солнечную энергию при помощи линз и рефлекторов. Так как это тепло можно хранить, такие станции могут вырабатывать электричество по мере надобности, днем и ночью, в любую погоду. Большие зеркала — с точечным либо линейным фокусом — концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %. Все тепловые электростанции, кроме солнечных прудов, для достижения высоких температур применяют концентраторы, которые отражают свет Солнца с большей поверхности на меньшую поверхность приемника. Обычно такая система состоит из концентратора, приемника, теплоносителя, аккумулирующей системы и системы передачи энергии. Современные технологии включают параболические концентраторы, солнечные параболические зеркала и гелиоэнергетические установки башенного типа. Их можно комбинировать с установками, сжигающими ископаемое топливо, а в некоторых случаях адаптировать для аккумуляции тепла. Основное преимущество такой гибридизации и теплоаккумуляции — это то, что такая технология может обеспечивать диспетчеризацию производства электричества, то есть выработка электроэнергии может производиться в периоды, когда в ней есть необходимость. Гибридизация и аккумулирование тепла могут повысить экономическую ценность производимого электричества и снизить его среднюю стоимость.

Солнечные установки с параболическим концентратором

В некоторых тепловых солнечных электростанциях используются параболические зеркала, которые концентрируют солнечный свет на приемных трубках, содержащих жидкость-теплоноситель. Эта жидкость нагревается почти до 400 ºC и прокачивается через ряд теплообменников; при этом вырабатывается перегретый пар, приводящий в движение обычный турбогенератор для производства электричества. Для снижения тепловых потерь приемную трубку может окружать прозрачная стеклянная трубка, помещенная вдоль фокусной линии цилиндра. Как правило, такие установки включают в себя одноосные или двуосные системы слежения за Солнцем. В редких случаях они являются стационарными (рис. 6.2).

Солнечная установка с параболическим концентратором
Рис. 6.2. Солнечная установка с параболическим концентратором

Оценки данной технологии показывают более высокую стоимость вырабатываемой электроэнергии, чем у других солнечных тепловых электростанций. Это объясняется низкой концентрацией солнечного излучения, более низкими температурами. Однако, при условии накопления опыта эксплуатации, улучшения технологии и снижения эксплуатационных расходов параболические концентраторы могут быть наименее дорогостоящей и самой надежной технологией ближайшего будущего.

Солнечная электростанция тарельчатого типа

Солнечные установки тарельчатого типа представляют собой батарею параболических тарелочных зеркал схожих формой со спутниковой тарелкой, которые фокусируют солнечную энергию на приемники, расположенные в фокусной точке каждой тарелки (рис. 6.3). Жидкость в приемнике нагревается до 1000 ºС и непосредственно применяется для производства электричества в небольшом двигателе и генераторе, соединенном с приемником.

Солнечная установка тарельчатого типа
Рис. 6.3. Солнечная установка тарельчатого типа

Высокая оптическая эффективность и малые начальные затраты делают системы зеркал/двигателей наиболее эффективными из всех гелиотехнологий. Системе из двигателя Стирлинга и параболического зеркала принадлежит мировой рекорд по эффективности превращения солнечной энергии в электричество. В 1984 году на Ранчо Мираж в штате Калифорния удалось добиться практического КПД 29%. Благодаря модульному проектированию, такие системы представляют собой оптимальный вариант для удовлетворения потребности в электроэнергии как для автономных потребителей, так и для гибридных, работающих на общую сеть.

Солнечные электростанции башенного типа

Солнечные электростанции башенного типа с центральным приемником Солнечные электростанции башенного типа с центральным приемником используют вращающееся поле отражателей-гелиостатов. Они фокусируют солнечный свет на центральный приемник, сооруженный на верху башни, который поглощает тепловую энергию и приводит в действие турбогенератор (рис. 6.4, рис. 6.5).

Солнечная электростанция башенного типа с центральным приемником
Рис. 6.4. Солнечная электростанция башенного типа с центральным приемником

Управляемая компьютером двуосная система слежения устанавливает гелиостаты так, чтобы отраженные солнечные лучи были неподвижны и всегда падали на приемник. Циркулирующая в приемнике жидкость переносит тепло к тепловому аккумулятору в виде пара. Пар вращает турбину для выработки электроэнергии, либо непосредственно используется в промышленных процессах. Температуры на приемнике достигают от 500 до 1500 ºC. Благодаря аккумулированию тепла башенные электростанции стали уникальной гелиотехнологией, позволяющей вырабатывать электроэнергию по заранее заданному графику.

Солнечная башенная электростанция "Solar Two" в Калифорнии
Рис. 6.5. Солнечная башенная электростанция «Solar Two» в Калифорнии

Солнечные пруды

Ни фокусирующие зеркала, ни солнечные фотоэлементы не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах (рис. 6.6).

Схема устройства солнечного пруда
Рис. 6.6. Схема устройства солнечного пруда
1. Высокая концентрация соли. 2. Средний слой. 3. Низкая концентрация соли. 4. Холодная вода «в» и горячая вода «из»

Солнечные пруды имеют высокую концентрацию соли в придонных слоях воды, неконвективный средний слой воды, в котором концентрация соли возрастает с глубиной и конвекционный слой с низкой концентрацией соли — на поверхности. Солнечный свет падает на поверхность пруда, и тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности. Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает. Горячий придонный «рассол» используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество. Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества.

Достоинства и недостатки солнечных тепловых электростанций

Солнечные электростанции башенного типа с центральным приемником и солнечные электростанции с параболическими концентраторами оптимально работают в составе крупных, соединенных с сетью электростанций мощностью 30-200 МВт, тогда как солнечные электростанции тарельчатого типа состоят из модулей и могут использоваться как в автономных установках, так и группами общей мощностью в несколько мегаватт.

Характеристики солнечных тепловых электростанций
Таблица 6.1 Характеристики солнечных тепловых электростанций

Солнечные параболические концентраторы — на сегодня наиболее развитая из солнечных энергетических технологий и именно они, вероятно, будут использоваться в ближайшей перспективе. Электростанции башенного типа с центральным приемником, благодаря своей эффективной теплоаккумулирующей способности, также могут стать солнечными электростанциями недалекого будущего. Модульный характер установок тарельчатого типа позволяет использовать их в небольших установках. Солнечные электростанции башенного типа с центральным приемником и установки тарельчатого типа позволяют достичь более высоких значений КПД превращения солнечной энергии в электрическую при меньшей стоимости, чем у электростанций с солнечными параболическими концентраторами. В табл. 6.1 приведены основные характеристики трех вариантов солнечной тепловой электрогенерации.